I have a problem with my detector , i get [bbox, score, label] empty.

2 Ansichten (letzte 30 Tage)
abdullah al-dulaimi
abdullah al-dulaimi am 17 Jul. 2022
Beantwortet: Shuba Nandini am 1 Sep. 2023
%% detection
pp=alexnet;
pp1=pp.Layers;
pp=pp.Layers(1:19);
ppp=[pp
fullyConnectedLayer(2)
softmaxLayer()
classificationLayer()];
options = trainingOptions('sgdm', ...
'MiniBatchSize', 10, ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 1, ...
'CheckpointPath', tempdir);
train1 =trainFastRCNNObjectDetector(gTruth, ppp, options, ...
'NegativeOverlapRange', [0 0.1], ...
'PositiveOverlapRange', [0.5 1], ...
'SmallestImageDimension', 300);
img = imread('image (825).JPG');
[bbox, score, label] = detect(train1, img);
imshow(insertObjectAnnotation(img, 'rectangle', bbox, label));

Antworten (1)

Shuba Nandini
Shuba Nandini am 1 Sep. 2023
Hello, 
It is my understanding that you want to train the trainFastRCNNObjectDetector” with ‘alexnet’ as the backbone network.
As per the documentation, “trainFastRCNNObjectDetector” function offers a functionality to automatically transform the backbone classification network, into a Fast R-CNN network by adding an ROI max pooling layer, classification layer and regression layer.
The above functionality can be achieved, by specifying the required classification network name for the “network” argument. 
Please refer to the following link, for further information, 
Hope this helps!
Regards,
Shuba Nandini

Kategorien

Mehr zu Introduction to Installation and Licensing finden Sie in Help Center und File Exchange

Tags

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by