I have a problem with my detector , i get [bbox, score, label] empty.
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
%% detection
pp=alexnet;
pp1=pp.Layers;
pp=pp.Layers(1:19);
ppp=[pp
fullyConnectedLayer(2)
softmaxLayer()
classificationLayer()];
options = trainingOptions('sgdm', ...
'MiniBatchSize', 10, ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 1, ...
'CheckpointPath', tempdir);
train1 =trainFastRCNNObjectDetector(gTruth, ppp, options, ...
'NegativeOverlapRange', [0 0.1], ...
'PositiveOverlapRange', [0.5 1], ...
'SmallestImageDimension', 300);
img = imread('image (825).JPG');
[bbox, score, label] = detect(train1, img);
imshow(insertObjectAnnotation(img, 'rectangle', bbox, label));
0 Kommentare
Antworten (1)
Shuba Nandini
am 1 Sep. 2023
Hello,
It is my understanding that you want to train the “trainFastRCNNObjectDetector” with ‘alexnet’ as the backbone network.
As per the documentation, “trainFastRCNNObjectDetector” function offers a functionality to automatically transform the backbone classification network, into a Fast R-CNN network by adding an ROI max pooling layer, classification layer and regression layer.
The above functionality can be achieved, by specifying the required classification network name for the “network” argument.
Please refer to the following link, for further information,
Hope this helps!
Regards,
Shuba Nandini
0 Kommentare
Siehe auch
Kategorien
Mehr zu Introduction to Installation and Licensing finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!