How to find a power spectral density (PSD) of any matrix?
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am here attached a code which I am using, but don't know it is right or wrong.
please someone check it, It is working right for an matrix?
help will be appreciated.
data_01= load('plot_bouguer_20220713013040.txt');
% https://drive.matlab.com/files/plot_bouguer_20220713013040.txt
%above link for data
A02=data_01(:,3);
A03=reshape(A02,541,541);
A=A03';
bouin=A;
numrows=541;
numcolumns=541;
truncation=0.1 ;
% Calculate mean value of the gravity map
fftbou=fft2(bouin); %fft2 computes the 2-D FFT of a 2-D matrix (bou, in this case)
meangravity=(fftbou(1,1)/(numrows*numcolumns)); %the first term of the 2-D fft array divided by the product of the number of rows and columns provides the mean of given matrix
% Demean data
disp('Data sets demeaned') %displays the text 'Data sets demeaned' on the screen
bou=bouin-meangravity; %input data
%A cosine Tukey window with a truncation of 10% default is applied
wrows = tukeywin(numrows,truncation); %this computes a 1-D cosine Tukey window of the same length as the original matrix input rows and with the truncation defined by the variable 'truncation'
wcolumns = tukeywin(numcolumns,truncation); %this computes a 1-D cosine Tukey window of the same length as the original matrix input columns and with the truncation defined by the variable 'truncation'
w2 =wrows(:)*wcolumns(:).'; %this generates a 2-D cosine Tukey window multipliying the 1-D windows
bou=bou.*w2'; %the original gravity input matrix, previously demeaned, is multiplied by the cosine window
mapabou=bou'; %the original input matrix after demeaning is transposed
fftbou=fft2(mapabou); %the 2-D FFT of the gravity input matrix is computed after demeaning
spectrum=abs(fftbou(1:numrows/2, 1:numcolumns/2)); %this computes the amplitude spectrum
st11=spectrum; %amplitude spectrum
p_s=log10(st11'.^2); % power spectrum
%st=max(p_s); % mean of each rows of amplitude spectrum
st=mean(p_s) ;
number_psd = length(st);
st1=reshape(st,number_psd,1);
wn_k=linspace(0,0.03 ,number_psd); % wave number k
dwn_k=wn_k';
plot(wn_k,st1,'.','MarkerSize',15)
grid on
grid minor
xlabel('wavenumber(1/km)')
ylabel('PSD (Log(Amplitude.^2))')
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Parametric Spectral Estimation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!