Deep Learning Toolbox Multiply by [] in Second Learning Iteration?

5 Ansichten (letzte 30 Tage)
Travis Wiens
Travis Wiens am 5 Jul. 2022
Beantwortet: Abhaya am 5 Sep. 2024
In the following code for a Conditional Variational Autoencoder I get the following error on the second iteration. I don't see any unusual values in the learnables for the encoderNet or decoderNet. It appears that this error doesn't appear when I run it in 2022a using the "run" button on this page.
Output in 2021a:
>> minimum_cvae
iteration =
1
loss =
1(C) × 1(B) single dlarray
6.6875
iteration =
2
loss =
1(C) × 1(B) single dlarray
6.6573
Error using .*
Arrays have incompatible sizes for this operation.
Error in tp26c2fafb_59b5_412b_af58_81dab1a42f5d (line 36)
tmp_33 = ((tmp_30.*[]).*constants{2});
Error in
deep.internal.recording.convert.tapeToFunction>@(varargin)fcnWithConstantsInput(varargin{:},constants)
(line 37)
fcn = @(varargin)fcnWithConstantsInput(varargin{:},constants);
Error in deep.internal.recording.CodegenExtensionMethod/backward (line
61)
[varargout{1:meth.NumGradients}] =
meth.BackwardFunction(varargin{:});
Error in deep.internal.dlarray.ExtensionOperation/backward (line 46)
[varargout{1:nargout}] = backward(op.Method, varargin{:});
Error in deep.internal.recording.RecordingArray/backwardPass (line 70)
grad = backwardTape(tm,{y},{initialAdjoint},x,retainData,false);
Error in dlarray/dlgradient (line 83)
[grad,isTracedGrad] = backwardPass(y,xc,pvpairs{:});
Error in minimum_cvae>modelGradients (line 64)
[decodeGrad, encodeGrad] = dlgradient(loss, decoderNet.Learnables, ...
Error in deep.internal.dlfeval (line 18)
[varargout{1:nout}] = fun(x{:});
Error in dlfeval (line 41)
[varargout{1:nout}] = deep.internal.dlfeval(fun,varargin{:});
Error in minimum_cvae (line 47)
[encodeGrad, decodeGrad] = dlfeval(...
Related documentation
Code:
%generate some fake data
XTrain=dlarray(randn(10,100),'CB');%Autoencoder inputs
YTrain=dlarray(randn(2,100),'CB');%Conditional inputs
N_input=size(XTrain,1);
N_latent = 9;%number of latent variables
N_cond=size(YTrain,1);%number of conditional inputs
%define encoder with two inputs
encoderLG = layerGraph([
featureInputLayer(N_input,'Name','input_encoder');
concatenationLayer(1,2,'Name','concat1')
fullyConnectedLayer(5,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(2 * N_latent, 'Name', 'fc_encoder')
]);
encoderLG = addLayers(encoderLG,featureInputLayer(N_cond,'Name','cond_input'));
encoderLG = connectLayers(encoderLG,"cond_input","concat1/in2");
%definte decoder
decoderLG = layerGraph([
featureInputLayer(N_latent,'Name','input_decoder');
concatenationLayer(1,2,'Name','concat1')
fullyConnectedLayer(5,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(N_input, 'Name', 'fc_decoder')
]);
decoderLG = addLayers(decoderLG,featureInputLayer(N_cond,'Name','cond_input'));
decoderLG = connectLayers(decoderLG,"cond_input","concat1/in2");
encoderNet = dlnetwork(encoderLG);
decoderNet = dlnetwork(decoderLG);
numEpochs = 10;
lr = 1e-3;
iteration=0;
avgGradientsEncoder = [];
avgGradientsSquaredEncoder = [];
avgGradientsDecoder = [];
avgGradientsSquaredDecoder = [];
for epoch = 1:numEpochs
iteration=iteration+1
[encodeGrad, decodeGrad] = dlfeval(...
@modelGradients, encoderNet, decoderNet, XTrain, YTrain);
[decoderNet.Learnables, avgGradientsDecoder, avgGradientsSquaredDecoder] = ...
adamupdate(decoderNet.Learnables, ...
decodeGrad, avgGradientsDecoder, avgGradientsSquaredDecoder, iteration, lr);
[encoderNet.Learnables, avgGradientsEncoder, avgGradientsSquaredEncoder] = ...
adamupdate(encoderNet.Learnables, ...
encodeGrad, avgGradientsEncoder, avgGradientsSquaredEncoder, iteration, lr);
end
iteration = 1
loss =
1(C) × 1(B) single dlarray 6.5279
iteration = 2
loss =
1(C) × 1(B) single dlarray 6.5519
iteration = 3
loss =
1(C) × 1(B) single dlarray 6.5803
iteration = 4
loss =
1(C) × 1(B) single dlarray 6.5597
iteration = 5
loss =
1(C) × 1(B) single dlarray 6.5038
iteration = 6
loss =
1(C) × 1(B) single dlarray 6.5244
iteration = 7
loss =
1(C) × 1(B) single dlarray 6.4807
iteration = 8
loss =
1(C) × 1(B) single dlarray 6.5267
iteration = 9
loss =
1(C) × 1(B) single dlarray 6.4935
iteration = 10
loss =
1(C) × 1(B) single dlarray 6.4696
function [encodeGrad, decodeGrad] = modelGradients(encoderNet, decoderNet, x, y)
[z, zMean, zLogvar] = sampling(encoderNet, x, y);
xPred = sigmoid(forward(decoderNet, z, y));
loss = ELBOloss(x, xPred, zMean, zLogvar)
[decodeGrad, encodeGrad] = dlgradient(loss, decoderNet.Learnables, ...
encoderNet.Learnables);
end
function elbo = ELBOloss(x, xPred, zMean, zLogvar)
squares = 0.5*(xPred-x).^2;
weight=10;
reconstructionLoss = mean(squares(:));
KL = mean( -.5 * mean(1 + zLogvar - zMean.^2 - exp(zLogvar), 1));
elbo = weight*reconstructionLoss + KL;
end
function [zSampled, zMean, zLogvar] = sampling(encoderNet, x, y)
encoded = forward(encoderNet, x, y);
d = size(encoded,1)/2;
zMean = encoded(1:d,:);
zLogvar = encoded(1+d:end,:);
sz = size(zMean);
epsilon = randn(sz);
sigma = exp(.5 * zLogvar);
z = epsilon .* sigma + zMean;
zSampled = dlarray(z, 'CB');
end

Antworten (1)

Abhaya
Abhaya am 5 Sep. 2024
Hello Travis,
I encountered a similar error while using the Deep Learning Toolbox in MATLAB 2021a.
This error appears to occur during a call to the backwardPass function. However, when I run the same code in MATLAB 2021b, it works without any issues for me.

Produkte


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by