how to calculate fast Fourier transform with a 128-point window on these data with non-uniform sampling frequency
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
NGR MNFD
am 30 Jun. 2022
Kommentiert: NGR MNFD
am 19 Jul. 2022
Hi everyone
I have provided you with my MATLAB code and data. These samples were recorded at a non-uniform sampling frequency, so I used the NUFFT command to convert the Fourier.
Now, if I want to use fast Fourier transform with a 128-point window on these data with non-uniform sampling frequency to calculate the power spectrum, and then divide the frequency range of all power spectra into eight equal parts and divide the area under the 8-channel curve. What calculator code should I use to calculate?THANKS SO MUCH
This is my code:
%% load Data
DATA3 = [];DATA4 = [];FFT3 =[];M7=[];
for j =1:13
data3 = load(strcat(strcat('als',num2str(j)),'.ts'));
DATA3 = [DATA3;data3];
t3 = data3(:,1); f3 = (length(data3)/300))*(0:(length(t3)-1))/length(t3);
fft3 = nufft(data3(:,2:13),t3,f3);FFT3 = [FFT3;fft3]; M6 = abs(fft3);M7 = [M7;M6];
end
FFT4=[];M9=[];
for j = 1:16
data4 = load(strcat(strcat('control',num2str(j)),'.ts'));
DATA4 = [DATA4;data4];
t4 = data4(:,1); f4 = (length(data4)/300))*(0:(length(t4)-1))/length(t4);
fft4 = nufft(data4(:,2:13),t4,f4);FFT4 = [FFT4;fft4]; M8 = abs(fft4);M9 =[M9;M8];
% f4 = (0.8167/2)*(0:(length(DATA4)-1))/length(DATA4);
end
0 Kommentare
Akzeptierte Antwort
Mathieu NOE
am 5 Jul. 2022
hello
see my suggestion below
the result is in Area
clc
clearvars
load('DATA3.mat');
t3 = data3(:,1);
%% uniform resampling of data on 128 samples
nfft = 128; % fft length
newt3 = linspace(min(t3),max(t3),nfft); % equally spaced time vector
dt = mean(diff(newt3)); % new time increment
Fs = 1/dt; % sampling frequency
newdata3_2_13 = interp1(t3,data3(:,2:13),newt3,'linear');
%% fft
fft_spectrum = abs(fft(newdata3_2_13))/nfft;
% one sidded fft spectrum % Select first half
if rem(nfft,2) % nfft odd
select = (1:(nfft+1)/2)';
else
select = (1:nfft/2+1)';
end
fft_spectrum = fft_spectrum(select,:);
freq_vector = (select - 1)*Fs/nfft;
figure,semilogy(freq_vector,fft_spectrum);
%% divide the frequency range of all power spectra into eight equal parts
freq_points = linspace(min(freq_vector),max(freq_vector),8+1); % equally spaced freq vector
for cj = 1:numel(freq_points)-1
start = freq_points(cj);
stop = freq_points(cj+1);
ind = find(freq_vector>=start & freq_vector<=stop);
Area(cj,:) = trapz(freq_vector(ind),fft_spectrum(ind,:)); % Area under curve :
% rows = 8 (as many as parts) , cols = 12 , as many as signals
end
9 Kommentare
Mathieu NOE
am 19 Jul. 2022
hmmm
I am not really the expert here for the neural training - tried to figure out the issue by reading the doc for function train but it's quite outside my area of expertise - sorry !!
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Spectral Estimation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!