Disturbance Rejection with PID turner
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Esin Derin
am 25 Jun. 2022
Kommentiert: Esin Derin
am 25 Jun. 2022
I'm trying to do a disturbance rejection with PID tuner.I'm trying to do it but it keeps giving error.Could you help me?
G=tf([1],[0.1 1]);
G.InputName='yzad';
G.Output='ys';
yzad={1,10,100}
K={-100,-10,1,5,3}
Sum=sumbkl('++','yzad','ys')
ISAPID=connect('-100','Sum','G')
tf(ISAPID)
You can find my diagram attached .Thanks
0 Kommentare
Akzeptierte Antwort
Sam Chak
am 25 Jun. 2022
Hi @Esin Derin
For simplicity, you can do something straightforward and plot the time responses like this.
Case 1a:
,
rad/s
% sin(omega*t) = sin((2π*Freq)*t) = sin((2π/τ)*t)
omega = 1; % angular frequency {1, 10, 100} rad/s
tau = 2*pi/omega; % time period of a wave
Tf = 2*tau; % wave duration of Tf seconds
[u, t] = gensig("sine", tau, Tf); % generates a signal where t runs from 0 to Tf seconds
G = tf(1, [0.1 1]); % plant transfer function
K = -100; % feedback gain {-100, -10, -1, 5, 3}
H = -K;
Gcl = feedback(G, H) % closed-loop system subjected to a disturbance Y(s)/D(s)
lsim(Gcl, u, t)
grid on
Case 1b:
,
rad/s
% sin(omega*t) = sin((2π*Freq)*t) = sin((2π/τ)*t)
omega = 10; % angular frequency {1, 10, 100} rad/s
tau = 2*pi/omega; % time period of a wave
Tf = 2*tau; % wave duration of Tf seconds
[u, t] = gensig("sine", tau, Tf); % generates a signal where t runs from 0 to Tf seconds
G = tf(1, [0.1 1]); % plant transfer function
K = -100; % feedback gain {-100, -10, -1, 5, 3}
H = -K;
Gcl = feedback(G, H) % closed-loop system subjected to a disturbance Y(s)/D(s)
lsim(Gcl, u, t)
grid on
Case 1c:
,
rad/s
% sin(omega*t) = sin((2π*Freq)*t) = sin((2π/τ)*t)
omega = 100; % angular frequency {1, 10, 100} rad/s
tau = 2*pi/omega; % time period of a wave
Tf = 2*tau; % wave duration of Tf seconds
[u, t] = gensig("sine", tau, Tf); % generates a signal where t runs from 0 to Tf seconds
G = tf(1, [0.1 1]); % plant transfer function
K = -100; % feedback gain {-100, -10, -1, 5, 3}
H = -K;
Gcl = feedback(G, H) % closed-loop system subjected to a disturbance Y(s)/D(s)
lsim(Gcl, u, t)
grid on
Case 2a:
,
rad/s
% sin(omega*t) = sin((2π*Freq)*t) = sin((2π/τ)*t)
omega = 1; % angular frequency {1, 10, 100} rad/s
tau = 2*pi/omega; % time period of a wave
Tf = 2*tau; % wave duration of Tf seconds
[u, t] = gensig("sine", tau, Tf); % generates a signal where t runs from 0 to Tf seconds
G = tf(1, [0.1 1]); % plant transfer function
K = -10; % feedback gain {-100, -10, -1, 5, 3}
H = -K;
Gcl = feedback(G, H) % closed-loop system subjected to a disturbance Y(s)/D(s)
lsim(Gcl, u, t)
grid on
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu PID Controller Tuning finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



