Solving misfit using both L1 and L2 norm
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I have observed data and a vector "Pmodel ", which I am calculating following one equation. Now I need to have L1 norm and L2-norm solution of the difference between the observed and calculated parameter. Below, I followed the logic. Am I correct in this sense, kindly suggest.
----------------------------------------------
for i=1:length(s)
for j=1:length(h)
P_Model=C-(2.*v.*m_h(j))-(m_s(i).*log(v)); %Model
P_Obs=data(:,1);
Error(i,j)=sqrt(sum( sum( ((P_Model-P_Obs)).^2 ) )) %misfit calculation with L2 norm
Error(i,j)=sum(abs(P_Model-P_Obs)) %misfit calculation with L1 norm
end
end
------------------------------------------------------------------------------------------------------------------
Answer will be highly appreciated. Kindly suggest alternative if this is not correct apporach.
Thanking you in anticipation.
6 Kommentare
Torsten
am 21 Jun. 2022
Instead of searching for optimal s and h in a loop, use lsqcurvefit to fit your parameters (and minimize the error).
Antworten (0)
Siehe auch
Kategorien
Mehr zu Surrogate Optimization finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
