Why my graph not same as research paper?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
nur
am 8 Jun. 2022
Kommentiert: Asif Solanki
am 25 Aug. 2022
Hi, i want to ask why i did not get same graph as above?
This is my code that i have try:
%for t1=5%
x=0:0.2:10;
m=0.1;
C_0=1.0;
u_0=0.25;
D_0=0.45;
w_0=0.001;
p_0=0.02;
t1=5;
a=((((u_0)^2)/(4*D_0))+p_0);
b=((u_0)^2)/(4*D_0);
d=(1/(sqrt(2)*m));
e1=(log(2+sqrt(2)+(4+3*(sqrt(2)))*(tanh(m*t1/2))));
e2=(log(2+sqrt(2)-sqrt(2)*tanh(m*t1/2)));
T=d*(e1-e2);
f=((x-((((u_0)^2)+4*p_0*D_0)^1/2)*T)/(2*sqrt((D_0)*T)));
g=((x+((((u_0)^2)+4*p_0*D_0)^1/2)*T)/(2*sqrt((D_0)*T)));
h=((((u_0)-((((u_0)^2)+4*p_0*D_0)^1/2))*x)/(2*D_0));
i=((((u_0)+((((u_0)^2)+4*p_0*D_0)^1/2))*x)/(2*D_0));
j=((x-(u_0)*T)/(2*sqrt((D_0)*T)));
k=((x+(u_0)*T)/(2*sqrt((D_0)*T)));
l=(((u_0)*x)/(D_0));
n=exp(h);
o=erfc(f);
q=exp(i);
r=erfc(g);
s=exp(-p_0*T);
v=erfc(j);
y=erfc(k);
z=exp(l);
F=(((1/2).*n.*o)+((1/2).*q.*r));
G=(s.*(1-(1/2).*v-(1/2).*z.*y));
C1=(((w_0)/(p_0))+(C_0-((w_0)/(p_0))))*F-(((w_0)/(p_0))*G);
plot(x,C1)
hold on
%for t2=10%
x=0:0.2:10;
m=0.1;
C_0=1.0;
u_0=0.25;
D_0=0.45;
w_0=0.001;
p_0=0.02;
t2=10;
a=(((u_0)^2)/(4*D_0)+p_0);
b=((u_0)^2)/(4*D_0);
d=(1/(sqrt(2)*m));
e1=(log(2+sqrt(2)+(4+3*(sqrt(2)))*(tanh(m*t2/2))));
e2=(log(2+sqrt(2)-sqrt(2)*tanh(m*t2/2)));
T=d*(e1-e2);
f=((x-((((u_0)^2)+4*p_0*D_0)^1/2)*T)/(2*sqrt((D_0)*T)));
g=((x+((((u_0)^2)+4*p_0*D_0)^1/2)*T)/(2*sqrt((D_0)*T)));
h=((((u_0)-((((u_0)^2)+4*p_0*D_0)^1/2))*x)/(2*D_0));
i=((((u_0)+((((u_0)^2)+4*p_0*D_0)^1/2))*x)/(2*D_0));
j=((x-(u_0)*T)/(2*sqrt((D_0)*T)));
k=((x+(u_0)*T)/(2*sqrt((D_0)*T)));
l=(((u_0)*x)/(D_0));
n=exp(h);
o=erfc(f);
q=exp(i);
r=erfc(g);
s=exp(-p_0*T);
v=erfc(j);
y=erfc(k);
z=exp(l);
F=(((1/2).*n.*o)+((1/2).*q.*r));
G=(s.*(1-(1/2).*v-(1/2).*z.*y));
C2=(((w_0)/(p_0))+(C_0-((w_0)/(p_0))))*F-(((w_0)/(p_0))*G);
plot(x,C2)
hold off
hold on
%for t3=15%
x=0:10;
m=0.1;
C_0=1.0;
u_0=0.25;
D_0=0.45;
w_0=0.001;
p_0=0.02;
t3=15;
a=(((u_0)^2)/(4*D_0)+p_0);
b=((u_0)^2)/(4*D_0);
d=(1/(sqrt(2)*m));
e1=(log(2+sqrt(2)+(4+3*(sqrt(2)))*(tanh(m*t3/2))));
e2=(log(2+sqrt(2)-sqrt(2)*tanh(m*t3/2)));
T=d*(e1-e2);
f=((x-((((u_0)^2)+4*p_0*D_0)^1/2)*T)/(2*sqrt((D_0)*T)));
g=((x+((((u_0)^2)+4*p_0*D_0)^1/2)*T)/(2*sqrt((D_0)*T)));
h=((((u_0)-((((u_0)^2)+4*p_0*D_0)^1/2))*x)/(2*D_0));
i=((((u_0)+((((u_0)^2)+4*p_0*D_0)^1/2))*x)/(2*D_0));
j=((x-(u_0)*T)/(2*sqrt((D_0)*T)));
k=((x+(u_0)*T)/(2*sqrt((D_0)*T)));
l=(((u_0)*x)/(D_0));
n=exp(h);
o=erfc(f);
q=exp(i);
r=erfc(g);
s=exp(-p_0*T);
v=erfc(j);
y=erfc(k);
z=exp(l);
F=(((1/2).*n.*o)+((1/2).*q.*r));
G=(s.*(1-(1/2).*v-(1/2).*z.*y));
C3=(((w_0)/(p_0))+(C_0-((w_0)/(p_0))))*F-(((w_0)/(p_0))*G);
plot(x,C3)
hold on
legend({'t=5','t=10','t=15'},'Location','southwest')
xlabel('Distance,x (meter)')
ylabel('Concentration,C(x,t)')
%ylim([0, 1])
xlim([0, 10])
6 Kommentare
Torsten
am 8 Jun. 2022
I corrected the three errors in your code detected by @SALAH ALRABEEI
Looks better now, but concentrations still become negative. So your search must go on.
Akzeptierte Antwort
Torsten
am 8 Jun. 2022
Bearbeitet: Torsten
am 8 Jun. 2022
Sometimes it's better to start anew:
x=(0:0.1:10).';
C0 = 1.0;
tt = [5.0,10.0,15,0];
u0 = 0.25;
D0 = 0.45;
m = 0.1;
gamma0 = 0.02;
mu0 = 0.001;
C = zeros(numel(x),numel(tt));
for i=1:numel(tt)
t = tt(i);
T = 1/(sqrt(2)*m)*(log(2+sqrt(2)+(4+3*sqrt(2))*tanh(m*t/2))-...
log(2+sqrt(2)-sqrt(2)*tanh(m*t/2)));
F = 0.5*exp((u0-sqrt(u0^2+4*gamma0*D0))*x/(2*D0)).*...
erfc((x-sqrt(u0^2+4*gamma0*D0)*T)./(2*sqrt(D0*T)))+...
0.5*exp((u0+sqrt(u0^2+4*gamma0*D0))*x/(2*D0)).*...
erfc((x+sqrt(u0^2+4*gamma0*D0)*T)./(2*sqrt(D0*T)));
G = exp(-gamma0*T)*(1-0.5*erfc((x-u0*T)./(2*sqrt(D0*T)))-...
0.5*exp(u0*x/D0).*erfc((x+u0*T)./(2*sqrt(D0*T))));
C(:,i) = mu0/gamma0 + (C0-mu0/gamma0)*F - mu0/gamma0*G;
end
plot(x,C)
2 Kommentare
Asif Solanki
am 25 Aug. 2022
Dear Sir,
My name is Asif Solanki I am a student persuing master's program in Italy. I am currently working on a small project where I do need to find the concentration of the pollutants using the Bear analytical method.
Therefore, would you like to assist me to find the solution?
Thank you very much
Best regards
Asif Solanki
Weitere Antworten (2)
Sam Chak
am 8 Jun. 2022
Hi @nur
One of the ways to find out is to determine the equilibrium points from the advection-dispersion equation.
I haven't checked the long equations. Can you verify if you plotted C or ? Sometimes, the transformations can be a little tricky.
2 Kommentare
Sam Chak
am 8 Jun. 2022
Bearbeitet: Sam Chak
am 8 Jun. 2022
Hi @nur
Try to make a little bit of value-added effort to the problem.
Another way is to plot the concentration C from the numerical solution of the advection-dispersion differential equation.
This way you can compare with the analytical solution obtained from the paper. Bear in mind that sometimes misprints can occur due to authors' mistake, or the production crew's mistake. So, what was shown on the paper might not be truly the analytical solution. Therefore, yes you have to check.
But I'd suggest you to take numerical solution approach because that is directly from the governing advection-dispersion law. The analytical solution, which is "human-processed equation" from the law.
Edit: Hey, check this out:
SALAH ALRABEEI
am 8 Jun. 2022
You have two mistakes here
s=(exp(p_0)*T);
The three s in the code should be this
s=(exp(-p_0*T));
3 Kommentare
SALAH ALRABEEI
am 8 Jun. 2022
The reason is that the curves have data less than zero. Unlike those in the paper.
Anyway, you still can do this by adding this
axis([0 10 0 1])
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!