Integration takes time too long

34 Ansichten (letzte 30 Tage)
Nurul Afrina
Nurul Afrina am 8 Jun. 2022
Kommentiert: Nurul Afrina am 8 Jun. 2022
Hi, i want to integrate this equation C(x,y,t) but it takes too long and I did not get the solution . What can I do ?
This is my code that I have try
x=-2:1:6;
y=0.4;
t=0.75;
v=1.5;
alpha=0.1;
gamma=1/(1-alpha);
syms r;
A=exp(v/2*(x+y)-alpha*gamma*t);
B=(r^3)/(r.^2+gamma+v^2/2)^2;
D=exp((alpha*gamma.^2*t)/(r.^2+gamma+v^2/2));
K=besselj(0,r*sqrt(x.^2+y.^2));
L=besselj(2,r*sqrt(x.^2+y.^2));
M=B*D.*(K+L);
C=(alpha*(gamma^2)*y*A).*int(M,r,0,inf);
plot(x,C)

Akzeptierte Antwort

Torsten
Torsten am 8 Jun. 2022
X=-2:0.1:6;
y=0.4;
t=0.75;
v=1.5;
alpha=0.1;
for i=1:numel(X)
x = X(i);
Fun = @(r)fun(r,x,y,t,v,alpha);
C(i) = integral(Fun,0,Inf);
end
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 5.9e-09. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 6.5e-09. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 6.7e-09. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 7.1e-09. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 7.4e-09. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 8.1e-09. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 8.3e-09. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 9.4e-09. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 9.7e-09. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.0e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.1e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.2e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.2e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.3e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.4e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.6e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.6e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.7e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.9e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 2.0e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 2.2e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 2.3e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 2.4e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 2.6e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 2.8e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 3.0e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 3.2e-08. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
plot(X,C)
function value = fun(r,x,y,t,v,alpha)
gamma=1/(1-alpha);
A=exp(v/2*(x+y)-alpha*gamma*t);
B=(r.^3)./(r.^2+gamma+v^2/2).^2;
D=exp((alpha*gamma.^2*t)./(r.^2+gamma+v^2/2));
K=besselj(0,r.*sqrt(x.^2+y.^2));
L=besselj(2,r.*sqrt(x.^2+y.^2));
M=B.*D.*(K+L);
value = alpha*gamma^2*y*A*M;
end

Weitere Antworten (1)

SALAH ALRABEEI
SALAH ALRABEEI am 8 Jun. 2022
Matlab is not good enough to symoblically ( analyitcally) integarate or solve such complex equations). If you want the the analytical integaration, it is better to simplify it yourslf by hand. However, you integarte (numerical approximation) over a truncated domain from [0, infinity) to [0, M], where M is a large number. This approached is already done by @Torsten here
  1 Kommentar
Nurul Afrina
Nurul Afrina am 8 Jun. 2022
Alright noted. Thank you for your explanation sir .

Melden Sie sich an, um zu kommentieren.

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by