Solving nonlinear function using fzero, Error Function values at the interval endpoints must differ in sign.
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
```
Imp=100;
t0=1e-6;
P=204000000;
Tf=2e-3;
x = fzero( @(x) myfunction(x, t0, Imp, P, Tf), [1.001, 10000]);
function [f] = myfunction( x, t0, Imp, P0, Tf)
f = Imp - (-(P0*t0*(x-1.0)*(x^(-Tf/(t0*(x-1.0)))-1.0))/(log(x)*(x^(-1.0/(x-1.0)) -x^(-x/(x-1.0))))+(P0*t0*(x^(-(Tf*x)/(t0*(x-1.0)))-1.0)*(x-1.0))/(x*log(x)*(x^(-1.0/(x-1.0))-x^(-x/(x-1.0)))));
end
```
x must bigger than 1.0
I don't think these input will make fzero suffer
thank you
4 Kommentare
Walter Roberson
am 4 Jun. 2022
Bearbeitet: Walter Roberson
am 4 Jun. 2022
It is +100 at x=-1 but change x away from -1 and it goes complex, so at the moment I have no evidence that it has a real root.
Sam Chak
am 5 Jun. 2022
Once you have found the root of nonlinear function, can you verify if the solution really crosses 0?
Imp = 100;
t0 = 1e-6;
P0 = 204000000;
Tf = 2e-3;
f = @(x) Imp - (-(P0*t0*(x-1.0)*(x^(-Tf/(t0*(x-1.0)))-1.0))/(log(x)*(x^(-1.0/(x-1.0)) -x^(-x/(x-1.0))))+(P0*t0*(x^(-(Tf*x)/(t0*(x-1.0)))-1.0)*(x-1.0))/(x*log(x)*(x^(-1.0/(x-1.0))-x^(-x/(x-1.0)))));
Antworten (1)
Lateef Adewale Kareem
am 4 Jun. 2022
Imp=100;
t0=1e-6;
P=204000000;
Tf=2e-3;
x = nan;
options = optimset('Display','off'); % show iterations
x0 = 2;
while(isnan(x))
x = fzero( @(x) myfunction(x, t0, Imp, P, Tf), x0, options);
x0 = x0*1.2;
end
disp(['x = ', num2str(x)])
function [f] = myfunction( x, t0, Imp, P0, Tf)
f = Imp - (-(P0*t0*(x-1.0)*(x^(-Tf/(t0*(x-1.0)))-1.0))/(log(x)*(x^(-1.0/(x-1.0)) -x^(-x/(x-1.0))))+(P0*t0*(x^(-(Tf*x)/(t0*(x-1.0)))-1.0)*(x-1.0))/(x*log(x)*(x^(-1.0/(x-1.0))-x^(-x/(x-1.0)))));
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Get Started with MATLAB finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!