input sequence for lstm network
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Philip Hua
am 3 Jun. 2022
Beantwortet: Philip Hua
am 5 Jun. 2022
hi - i am sorry for asking many questions on LSTM but i find the implementation very confusing in matlab. I have a 32x305296 array of doubles which is generated by embedding musical note tokens in 32 dimensions. Effectively, we have 305296 notes of dimension 32 each in a time sequence. I need to create a LSTM network to train and predict the next note. (so it's a classification problem rather than regression as the token must be one of the permissible notes). I have set up the NN below. When i run the code I get this error
"Invalid training data. For image, sequence-to-label, and feature classification tasks, responses must be categorical."
Bearing in mind that this is a time sequence of embedded notes and not a group of labels, how do i change the time series of tokens to a permissible type?
layers = BachBotNN(32,32,0.3);
function [layers]=BachBotNN(inputSize,numHiddenUnits,dropoutProb)
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
batchNormalizationLayer
dropoutLayer(dropoutProb)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
batchNormalizationLayer
dropoutLayer(dropoutProb)
lstmLayer(numHiddenUnits,'OutputMode','last')
batchNormalizationLayer
dropoutLayer(dropoutProb)
fullyConnectedLayer(1)
softmaxLayer
classificationLayer
]
Akzeptierte Antwort
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!