how can i use particleswarm command to update weights and biases of a neural network ?
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
%this is a translation of the NARX neural network equation into matlab, where all weights and biases are equals to 0, i want to update them using particleswarm optimization to minimize the error.
order=3;
hiddenlayers=2;
H=[];iw=[];lw=[];rlw=[];bi=[];bo=1;
for ligne_countiw=1:hiddenlayers
for col_countiw=1:order
iw(ligne_countiw,col_countiw)=1;
end
end
for ligne_countlw=1:hiddenlayers
for col_countlw=1:order
lw(ligne_countlw,col_countlw)=1;
end
end
for countbi=1:hiddenlayers
bi(countbi)=1;
end
for countrlw=1:hiddenlayers
rlw(countrlw)=1;
end
H(1,1)=tanh(bi(1));
H(1,2)=tanh(bi(2));
IW=[];LW=[];
for ligne=1:1000
for col=1:1000
IW(ligne,col)=0;
end
end
for ligne=1:1000
for col=1:1000
LW(ligne,col)=0;
end
end
for t=2:order
for i=1:hiddenlayers
for r=1:t-1
IW(t,i)=IW(t,i)+iw(i,r)*XTrain(t-r);
LW(t,i)=LW(t,i)+lw(i,r)*TTrain(t-r);
end
H(t,i)=tanh(IW(t,i)+LW(t,i)+bi(i));
end
end
for t=order+1:length(XTrain)
for i=1:hiddenlayers
for r=1:order
IW(t,i)=IW(t,i)+iw(i,r)*XTrain(t-r);
LW(t,i)=LW(t,i)+lw(i,r)*TTrain(t-r);
end
H(t,i)=tanh(IW(t,i)+LW(t,i)+bi(i));
end
end
Y_estimated=[];
for counter=1:1000
Y_estimated(counter)=0;
end
for t=1:length(XTrain)
for i=1:hiddenlayers
Y_estimated(t)=Y_estimated(t)+rlw(i)*H(t,i)+bo;
end
end
mse = sum((Y_estimated-TTrain).^2)/length(Y_estimated);
0 Kommentare
Antworten (1)
Darshak
am 29 Apr. 2025
Hello sami dahdouh,
I understand that you want to use particle swarm optimization in your MATLAB code.
Particle swarm optimization can be done in MATLAB using the “particleswarm” function. You may refer to the MATLAB code below which illustrates the use of “particleswarm” function:
objective = @(W) sum((narx_predict(W, XTrain, order, hiddenlayers) - TTrain).^2) / length(XTrain);
options = optimoptions('particleswarm','SwarmSize',50,'Display','iter','MaxIterations',100);
[W_opt, fval] = particleswarm(objective, nvars, [], [], options);
This is a sample MATLAB code that illustrates the use of “particleswarm” function. You can customize it according to the objective function.
Kindly refer to the documentation link below for any further queries on “particleswarm” function.
Hope this helps you!
0 Kommentare
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!