How to solve coupled odes with two time dependent variables with ode45?
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ari Dillep Sai
am 31 Mai 2022
Bearbeitet: Torsten
am 31 Mai 2022
I am having two coupled odes in which there are two dependent variables are present. I tried solving them with the below but I am getting error. Can someone help me in solving the below equations?
%% equations which I need to solve are:
%% dc/dt = -((1-eps)*rhop/eps)*(dq/dt);
%% dq/dt = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n)) - q);
eps = 0.43;
rhop = 1228.5;
qm = 5.09;
R = 8.314;
T = 301;
Kl = 0.226;
n = 0.429;
K0 = 4.31e-9; % in pascal-1
delh = -29380; % heat of adsorption in j/mol
Keq = K0*exp(-delh/(R*T));
t = 0:1:100;
y0= zeros(2,1);
[tsol,ysol] = ode45(@(t,y) odfun(t,y), t, y0);
plot(tsol,ysol(:,1))
function dy = odfun(t,y,Kl,qm,Keq,R,T,n,rhop,eps)
c = y(1);
q = y(2);
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
dy(2) = -((1-eps)*rhop/eps)*dy(1);
end
The error which I am getting when I am running this code is as follows:
Not enough input arguments.
Error in odcase>odfun (line 21)
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
Error in odcase>@(t,y)odfun(t,y) (line 14)
[tsol,ysol] = ode45(@(t,y) odfun(t,y), t, y0);
Error in odearguments (line 90)
f0 = feval(ode,t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
Error in odcase (line 14)
[tsol,ysol] = ode45(@(t,y) odfun(t,y), t, y0);
Someone please let me know what are the mistakes in my code.
0 Kommentare
Akzeptierte Antwort
Torsten
am 31 Mai 2022
Bearbeitet: Torsten
am 31 Mai 2022
function dy = odfun(t,y,Kl,qm,Keq,R,T,n,rhop,eps)
q = y(1);
c = y(2);
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
dy(2) = -((1-eps)*rhop/eps)*dy(1);
end
instead of
function dy = odfun(t,y,Kl,qm,Keq,R,T,n,rhop,eps)
c = y(1);
q = y(2);
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
dy(2) = -((1-eps)*rhop/eps)*dy(1);
end
0 Kommentare
Weitere Antworten (1)
Sam Chak
am 31 Mai 2022
Not sure what went wrong and why it is unstable. If you are absolutely sure that the absorption dynamics is stable (converging to a steady-state value), then the ODEs must be incorrect. Please check all parameters and the signs. Sometimes, a single change of sign can make a huge difference. For example, as a test, I simply added a minus sign '–' in front of K1 on the right-hand side of dydt(1), and the system becomes stable.
Please countercheck the ODEs against various textbooks and journal papers. If you only rely on a single reference and there is a misprint, then you know what happens...
function dydt = odefcn(t, y)
dydt = zeros(2,1);
ep = 0.43;
rhop = 1228.5;
qm = 5.09;
R = 8.314;
T = 301;
Kl = 0.226;
n = 0.429;
K0 = 4.31e-9; % in pascal-1
delh = -29380; % heat of adsorption in j/mol
Keq = K0*exp(-delh/(R*T));
c = y(1);
q = y(2);
dydt(1) = -Kl*( ( qm*Keq*c*R*T/(1 + (Keq*c*R*T)^n)^(1/n) ) - q );
dydt(2) = -((1 - ep)*rhop/ep)*dydt(1);
end
tspan = [0 0.1];
init = [1; 0];
[t, y] = ode45(@odefcn, tspan, init);
plot(t, y(:, 1), 'linewidth', 1.5)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1016835/image.png)
3 Kommentare
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!