Code optimization (3 line function)
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ronald van den Berg
am 28 Jan. 2015
Kommentiert: Titus Edelhofer
am 28 Jan. 2015
I need a function that efficiently applies a reflective bound to a signal: when the signal reaches the bound, it stays there until the signal increases again (example below).
I wrote a short function that applies such a bound to all signals in a matrix (code below).
My question is: does someone know a way to speed up this code? I'm applying it to matrices of size 5000x5000, which takes about a second per matrix. Since i have to do this on thousands of matrices, it would be nice to speed up the function. Thanks!
function Y = reflect(Y,b)
% apply reflecting bound to signals in matrix Y; columns are signals, rows time steps
mhist = zeros(1,size(Y,2)); % history of shifts applied in prev time steps
for ii=1:size(Y,1) % loop over time steps
m = max(b-Y(ii,:)-mhist,0); % compute required shift for current time step
Y(ii,:) = Y(ii,:) + mhist + m; % apply shift
mhist = mhist + m; % add shift to history
end
Here is an example of its output (red=original, black=after applying reflective bound at Y=-50):

The plot was produced using the following code:
rng(1);
X=0:.1:100;
Y=cumsum(normrnd(0,5,size(X)))-X;
plot(X,Y,'r');
hold on;
plot(X,reflect(Y',-50),'k-');
plot([X(1) X(end)],[-50 -50],'b');
2 Kommentare
luc
am 28 Jan. 2015
Pre-allocating matrices with nan vallues.
m, Y and mhist change within the loop, you know their final size so before entering the loop try to create them and fill them with nan vallues.
function:nan(3,3)=[nan nan nan;nan nan nan;nan nan nan]
Akzeptierte Antwort
Sean de Wolski
am 28 Jan. 2015
Bearbeitet: Sean de Wolski
am 28 Jan. 2015
If you have MATLAB Coder, this could be a potentially good candidate for C code generation and MEXing. It involves a loop with a persistent state that's updated on each iteration, something compiled languages are often faster with.
If you don't, post a zip file with the matrix and I'll benchmark it for you.
Weitere Antworten (1)
Titus Edelhofer
am 28 Jan. 2015
Hi,
one thing that comes to my mind: can you swap rows and columns, i.e., transpose your input matrix?
function Y = reflect(Y,b)
% apply reflecting bound to signals in matrix Y; columns are signals, rows time steps
mhist = zeros(size(Y,1),1); % history of shifts applied in prev time steps
for ii=1:size(Y,2) % loop over time steps
m = max(b-Y(:,ii)-mhist,0); % compute required shift for current time step
Y(:,ii) = Y(:,ii) + mhist + m; % apply shift
mhist = mhist + m; % add shift to history
end
That should be faster, since MATLAB likes columns better than rows ...
Titus
2 Kommentare
Titus Edelhofer
am 28 Jan. 2015
I'm curious to see the speed up you gain with the MEX/MATLAB Coder approach. And yes, matrices are stored columnwise in MATLAB (you see this e.g. with
A = magic(4);
A(:)
Therefore both from programming standpoint but also from memory access (cache!) working on columns is faster.
Titus
Siehe auch
Kategorien
Mehr zu Loops and Conditional Statements finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!