Algorithm conversion to Matlab Code
18 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello, i have this ziggurat algorithm that i wish to convert to a matlab code if someone would know the correct matlab code for it

0 Kommentare
Antworten (4)
Soufi
am 9 Nov. 2024
how can i traduct algorithme to matlab
1 Kommentar
Walter Roberson
am 9 Nov. 2024
Todd
am 14 Sep. 2025
@article{JSSv005i08,
title={The Ziggurat Method for Generating Random Variables},
volume={5},
url={https://www.jstatsoft.org/index.php/jss/article/view/v005i08},
doi={10.18637/jss.v005.i08},
abstract={We provide a new version of our ziggurat method for generating a random variable from a given decreasing density. It is faster and simpler than the original, and will produce, for example, normal or exponential variates at the rate of 15 million per second with a C version on a 400MHz PC. It uses two tables, integers k<sub>i</sub>, and reals w<sub>i</sub>. Some 99% of the time, the required x is produced by: Generate a random 32-bit integer j and let i be the index formed from the rightmost 8 bits of j. If j < k, return x = j x w<sub>i</sub>. We illustrate with C code that provides for inline generation of both normal and exponential variables, with a short procedure for settting up the necessary tables.},
number={8},
journal={Journal of Statistical Software},
author={Marsaglia, George and Tsang, Wai Wan},
year={2000},
pages={1–7}
}
The algorithm's source code is then
\usepackage{algorithm}
\usepackage{algpseudocode}
\begin{algorithm}
\caption{Original Ziggurat Algorithm (optimizations omitted for clarity)}
\RequireItem{$N$}{$\triangleright$ Number of regions}
\RequireItem{$x[0..N],\,y[0..N]$}{$\triangleright$ Coordinates of regions}
\RequireItem{$\mathrm{PDF}(\cdot)$}{$\triangleright$ Probability density function}
\RequireItem{$\mathrm{RandReal}()$}{$\triangleright$ A uniform real in $[0,1]$}
\RequireItem{$\mathrm{RandInteger}(N)$}{$\triangleright$ A uniform integer in $[0,N]$}
\begin{algorithmic}[1]
\Function{Ziggurat}{}
\Loop
\State $j \gets \mathrm{RandInteger}(N)$
\State $x \gets x[j] \times \mathrm{RandReal}()$
\If{$x < x[j+1]$}
\State \Return $x$
\ElsIf{$j \neq 0\;$ and $\;\mathrm{RandReal}() \times (y[j+1] - y[j]) < \mathrm{PDF}(x) - y[j]$}
\State \Return $x$
\ElsIf{$j = 0$}
\State \Return \Call{Tail}{$x[1]$}
\EndIf
\EndLoop
\EndFunction
\end{algorithmic}
\end{algorithm}
with Matlab code:
function z = zigguratSample(N, x, y, pdf_func)
% ZIGGURATSAMPLE Sample one variate using the Ziggurat algorithm
% Inputs:
% N : number of regions (integer)
% x(0:N) : right-edge coordinate of regions
% y(0:N) : heights of regions
% pdf_func : function handle, pdf_func(x) returns f(x)
%
% Output:
% z : a variate drawn from the target density
while true
j = randi([0, N]); % uniform integer in 0..N
u = rand(); % uniform real in [0,1)
xj = x(j+1); % MATLAB indices are 1-based; x(1) = x[0], etc
xjp1 = x(j+2); % x[j+1]
yj = y(j+1);
yjp1 = y(j+2);
x_star = xj * rand(); % propose horizontal coordinate
if x_star < xjp1
z = x_star;
return;
elseif j ~= 0 && rand() * (yjp1 - yj) < (pdf_func(x_star) - yj)
z = x_star;
return;
elseif j == 0
z = tailSample(x(2), pdf_func); % tail case, using x[1] in 0-based
return;
end
% else continue loop
end
end
function f = pdf_normal(x)
% Example: standard normal pdf
f = exp(-0.5 * x.^2) / sqrt(2*pi);
end
function z = tailSample(x1, pdf_func)
% Tail sampler; for normal, use exponentials etc.
while true
u = rand();
v = rand();
x = -log(u) / x1;
y = -log(v);
if 2*y >= x^2
z = x + x1;
return;
end
end
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Random Number Generation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!