Meshgrid orthogonal to a line in 3D Space

4 Ansichten (letzte 30 Tage)
ADSW121365
ADSW121365 am 20 Mai 2022
Kommentiert: ADSW121365 am 23 Mai 2022
In 3D space, how do I generate a set of points, like a meshgrid, orthogonal to a specific straight line passing through its center? This is definitely not a difficult problem, but I'm overcomplicating it somewhere in my brain and related questions didn't help me with the gridding part.
For a line orientated along one axis, what I'm trying to do is this:
X = [-5:5]; Y = ones(size(X)); Z = ones(size(X)); %Define Line
No_points = 5;
plane_x = linspace(-1,1,5); plane_y = linspace(0.9,1.1,5); plane_z = linspace(0.9,1.1,5); %Specify Points
[plane_x,plane_y,plane_z]=meshgrid(plane_x,plane_y,plane_z);
figure;plot3(X,Y,Z,'r-'); hold on; plot3(plane_x(:),plane_y(:),plane_z(:),'k.');
How do I generate the same orthogonal meshgrid of points passing through the origin for a "3D line", e.g:
X = [-5:5]; Y = X; Z = X;

Antworten (3)

Matt J
Matt J am 20 Mai 2022
Bearbeitet: Matt J am 20 Mai 2022
Pick a 3D direction vector for the straight line, e.g.
d=[1,1,1];
Then,
d=d(:)./norm(d);
B=null(d.'); %basis
[x,y,z]=meshgrid(linspace(-5,5,10));
[m,n]=size(x);
res=@(q)reshape(q,1,m,n);
XYZ=B(:,1).*res(x) + B(:,2).*res(y) +d(:).*res(z);
scatter3(XYZ(1,:), XYZ(2,:), XYZ(3,:) );
axis equal
xlabel X, ylabel Y, zlabel Z, view(30,40)
  2 Kommentare
Torsten
Torsten am 20 Mai 2022
Bearbeitet: Torsten am 20 Mai 2022
... followed by the 5-fold copy-translate of this meshgrid along the positive and negative normal of the plane :-)
Matt J
Matt J am 20 Mai 2022
Yep, I modified accordingly.

Melden Sie sich an, um zu kommentieren.


Matt J
Matt J am 20 Mai 2022
Bearbeitet: Matt J am 20 Mai 2022
There are also ready-made File Exchange tools you can use, like this one
d=[1;1;1]; %direction of line
d=d(:)./norm(d);
gtPlane=planarFit.groundtruth([],d,0); %ground truth plane
b0=[1,0,0];
b1=cross([0,1,0],gtPlane.normal); %Make one sampling direction parallel to x-z plane
b2=[]; %Make the other direction orthogonal to b1
t=linspace(-5,5,10);
XYZ=gtPlane.sample(b0,b1,b2,t,t); %Post-sample the plane
XYZ=num2cell( cell2mat(XYZ)+d(:).*reshape(t,1,1,[]) ,[2,3]); %expand along d
hPost=scatter3(XYZ{1}(:), XYZ{2}(:), XYZ{3}(:));
xlabel X, ylabel Y, zlabel Z; view(30,40); axis equal

Matt J
Matt J am 20 Mai 2022
Bearbeitet: Matt J am 20 Mai 2022
You can also start with an unrotated grid, then rotate it:
d=[1;1;1]; d=d(:).'/norm(d);
[X,Y,Z]=meshgrid(-5:5);
R=[d;null(d)'];
XYZ=num2cell( [X(:),Y(:),Z(:)]*R',1);
scatter3(XYZ{:});
axis equal
xlabel X, ylabel Y, zlabel Z, view(30,40)
  1 Kommentar
ADSW121365
ADSW121365 am 23 Mai 2022
Firstly, I assume my question is at fault rather than the answer. Both the first and this answer give the same solution, however this is more concise. Choosing Nx = 3 to make the issue/question clearer.
Implementation:
clear,close all; clc;
Line_X = linspace(-5,5,5); Line_Y = Line_X; Line_Z = Line_X;
%Generate Evaluation Points:
Xl = -2; Xu = 2; Nx = 3; Yl = -2; Yu = 2; Ny = 100; Zl = -2; Zu = 2; Nz = 100;
[opt_x,opt_y,opt_z] = ...
meshgrid(linspace(Xl,Xu,Nx),linspace(Yl,Yu,Ny),linspace(Zl,Zu,Nz));
%Rotate Points:
d=[1;1;1]; d=d(:).'/norm(d);
R=[d;null(d)'];
opt = [opt_x(:),opt_y(:),opt_z(:)]*R';
opt_x = opt(:,1)'; opt_y = opt(:,2)'; opt_z = opt(:,3)';
%Plot:
figure; plot3(Line_X,Line_Y,Line_Z,'r-'); hold on;
plot3(opt_x(:),opt_y(:),opt_z(:),'k.')
Here I am trying to make each of the 'planes' to intersect the line, but be perpendicular at all points. Returning back the the version I am able to code, for the simpler line used in my question I am looking for:
X = [-5:5]; Y = ones(size(X)); Z = ones(size(X)); %Define Line
plane_x = linspace(-2,2,3); plane_y = linspace(0.9,1.1,100); plane_z = linspace(0.9,1.1,100);
[plane_x,plane_y,plane_z]=meshgrid(plane_x,plane_y,plane_z);
figure;plot3(X,Y,Z,'r-'); hold on;
plot3(plane_x(:),plane_y(:),plane_z(:),'k.');

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by