Why does lu function yield different lower triangle matrix if I return [L,U] rather than [L, U, P]?
36 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
John Taranto
am 18 Mai 2022
Kommentiert: John Taranto
am 18 Mai 2022
% square matrix A
A=[10,-7,0;-3,2,6;5,-1,5]
Return only L and U
[L1,U1] = lu(A);
Return L, U and P
[L2,U2,P2] = lu(A);
Compare L1 and L2
L1
L2
0 Kommentare
Akzeptierte Antwort
Christine Tobler
am 18 Mai 2022
The LU decomposition really involves three new matrices: An upper-triangular matrix U, a lower-triangular matrix L, and a permutation matrix P. This is what the three-output syntax returns:
A = [10,-7,0;-3,2,6;5,-1,5]
[L, U, P] = lu(A)
P*A
L*U
Unfortunately, lu also has a 2-output syntax. However, since it wouldn't be numerically safe to just compute L and U without a permutation matrix, internally we still compute all three matrices, and then return the first output as P'*L
[L2, U2] = lu(A);
L2
P'*L
L2*U
So the result of two-output LU satisfies A == L*U, but the output L isn't a lower-triangular matrix as one might expect.
You can argue that it would be better if the LU function didn't have a two-output syntax at all, but that decision was made a long time ago, and was probably based on the point that most people think of LU as a two-matrix decomposition, without thinking of the necessary permutation vector.
Weitere Antworten (1)
Steven Lord
am 18 Mai 2022
"[L,U] = lu(A) returns an upper triangular matrix U and a matrix L, such that A = L*U. Here, L is a product of the inverse of the permutation matrix and a lower triangular matrix.
[L,U,P] = lu(A) returns an upper triangular matrix U, a lower triangular matrix L, and a permutation matrix P, such that P*A = L*U. The syntax lu(A,'matrix') is identical."
Emphasis added.
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!