Error using legend (line 263) Element 1 is not a string scalar or character array. All elements of cell input must be string scalars or character arrays.
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Fajwa Noor
am 18 Mai 2022
Kommentiert: Fajwa Noor
am 18 Mai 2022
%% ------Energy Harvesting using Piezo Material with Cantilever Structures------
% This promgram intend to use the Continuous Vibration Equation for estimate
% the power generation of a cantilever fully covered by piezoelectric material
% The Math background is provided by the paper "A Distributed Parameter
% Electromechanical Model For Cantilevered Piezoelectric Energy Harvesters" by
% A.Erturk and D.J.Inman.
clear ; close all; clc
%----------------------------INPUT PARAMETERS----------------------------------%
% This simulation can range diffente input parameters and then plot it. Choose
% one parameter and replace by MRANGE(c,2) variable. The MRANGE(c,2) will change
% According to the RANGE Variable bellow
% RANGE MODULE
RANGE = 0.1:0.1:0.5; % Range for used for change the parameters (MAX: 8)
VRANGE = 1:length(RANGE); % Vector with same size of the RANGE;
MRANGE = [VRANGE',RANGE']; % Matrix with The the Index of RANGE
F = 1:0.1:100; % Frequency Range (Hz)
RANGEV0 = ones(length(F),length(RANGE)); % Matrix for Voltage simulation data
RANGEI0 = ones(length(F),length(RANGE)); % Matrix for Current simulation data
RANGEP0 = ones(length(F),length(RANGE)); % Matrix for Power simulation data
% MECHANICAL PARAMETER INPUT
% Beam Support
for c = VRANGE
leB = MRANGE(c,2); % Lenght of the Beam (m)
wiB = 0.02; % Widht of the Beam (m)
thB = 0.0005; % Thickness of the Beam (m)
yoB = 100000000000; % Young's Modulos of the Beam kgf/m2
deB = 7165; % Material Density (kg/m3)
% Piezoelectric material
leP = leB; % Lenght of the Piezo (m) OBS: SHOULD BE SAME AS THE BEAM
wiP = wiB; % Widht of the Piezo (m)
thP = 0.0004; % Thickness of the Piezo (m)
deP = 7800; % Material Density of Piezo (kg/m3)
yoP = 66000000000; % Young's Modulos of the Piezo
% ELECTRICAL PARAMETER INPUT
% Piezoelectric material
d31 = -190*(10^-12); % Piezoelectric Constant at 31 Direction
e33 = 15.93*(10^-9); % Piezoelectric Dielectric Constant (F/m)
% BASE HARMONIC VIBRATION
Y0 = 0.000001; % Peak Displacement of the base (m)
f = F; % Frequency Range (Hz)
w = 2*pi()*f; % Angular frequency (Hz)
end
% ---------------------------FIRST CALCULATIONS--------------------------------%
% CALCULATING THE MASS DENSINTY
% The mass density is the total mass of the system dived by the total length of
% the Beam
volB = thB*wiB*leB;
volP = thP*wiP*leP;
maB = deB*volB;
maP = deP*volP;
massden = (maB+maP)/leB; % (kg/m)
% LOAD RESISTOR
% Resistor conected to the Piezo
rl = 1000000 ;% Ohms
% POSITION RELATIVE TO NEUTRAL AXIS
% The procedure of finding the position of the neutral axis of a composite cross
% section is transform the cross section to a homogeneous cross section of
% single Young’s modulus (Described in Timoshenko and Young Reference)
nY = yoB/yoP; % Ratio of Young's Modulos
hpa = ((thP ^ 2) + (2*nY*thP*thB) + (nY*(thB ^ 2)))/(2*(thP + (nY*thB))); % Distance from the top of the Piezo Layer to the Neutral Axis
hsa = ((thP ^ 2) + (2*thP*thB) + (nY*(thB ^ 2)))/(2*(thP + (nY*thB))); % Distance from the Bottom of the Piezo Layer to the Neutral Axis
hpc = (nY*thB*(thP + thB))/(2*(thP + (nY*thB))); % Distance from the Center of the Piezo Layer to the Neutral Axis
ha = -hsa; % Position of the bottom of the substructure layer from the neutral axis
hb = hpa - thP; % Position of the bottom of the Piezo layer from the neutral axis
hc = hpa; % Position of the top of the layer from the neutral axis
% BENDING STIFFNESS
yi = wiB*(((yoB*((hb^3)-(ha^3))) + (yoP*((hc^3) - (hb^3))))/3);
% COUPLING TERM
coup = - (((yoP*d31*wiB) / ((2*thP))*((hc^2) -(hb^2))));
% UNDAMPED NATURAL FREQUENCY OF THE BEAM
% The sigma constant for Cantilever Structuree is provide by the literature.
% The Solution for sigma is solving the equation 1 + cos (sig) cosh (sig) = 0
% For the three first modes we have:
sig1 = 1.875104069;
sig2 = 4.694091133;
sig3 = 7.854757438;
sig = [sig1;sig2;sig3];
wr1 = (sig1^2) * ((yi / (massden*(leB^4)))^0.5);
wr2 = (sig2^2) * ((yi / (massden*(leB^4)))^0.5);
wr3 = (sig3^2) * ((yi / (massden*(leB^4)))^0.5);
wr = [wr1;wr2;wr3];
% EIGENFUNCTIONS UNDAMPED FREE VIBRATION
ho = ((cosh(sig) + cos(sig))./(sin(sig) + sinh(sig)));
x = leB;
var = ((sig*x)./leB);
eigeinf = ((1/(massden*leB))^0.5).*(cosh(var) - cos(var) - (ho.*(sinh(var)-sin(var))));
% BENDING SLOPE (DERIVATE OF EIGENFUNCTIONS)
bendS = ((1/(massden*leB))^0.5)*(((sig./leB).* sinh(var)) + ((sig./leB).* sin(var)) - (ho.*(((sig./leB).*cosh(var))-((sig./leB).* cos(var)))));
% INTEGRATION OF THE EIGENFUNCTIONS
inteia = ((1/(massden*leB))^0.5)*((sinh(var)./(sig./leB)) - (sin(var)./(sig./leB)) - (ho.*((cosh(var)./(sig./leB))+(cos(var)./(sig./leB)))));
intei0 = ((1/(massden*leB))^0.5)*((sinh(0)./(sig./leB)) - (sin(0)./(sig./leB)) - (ho.*((cosh(0)./(sig./leB))+(cos(0)./(sig./leB)))));
intei = inteia - intei0;
% TIME CONSTANT OF THE PIEZO REPRESENTATION CIRCUIT
tc = (rl*e33*wiP*leP) / thP;
% MODAL CONSTANT TERM
mco = -(((d31*yoP*hpc*thP)/(e33*leB)) * bendS);
% MODAL COUPLING TERM
mc = coup * bendS;
% MODAL DAMPING (ASSUMING DAMPING RATIOS ZETA 1 = 0.01 AND ZETA 2 = 0.013)
ca = 0.654961133;
csI = 1.216501665*(10^-6);
zeta = ((csI*wr)/(2*yi))+ (ca./(2*wr*massden));
% VOLTAGE ESTIMATION
modes = 3;
fs = size(f);
numV = ones(modes,fs(2));
denV = ones(modes,fs(2));
for b = 1:modes
numV(b,:) = ((-1i*massden*w*mco(b)*intei(b))./(((wr(b)^2)-(w.^2)) + (1i*2*zeta(b)*wr(b)*w)));
denV(b,:) = ((1i*w*mc(b)*mco(b))./(((wr(b)^2)-(w.^2)) + (1i*2*zeta(b)*wr(b)*w)));
end
num = numV(1,:) + numV(2,:) + numV(3,:);
den = denV(1,:) + denV(2,:) + denV(3,:);
denV2 =((1 + (1i*w*tc))/tc);
v = num./(den+denV2);
V0 = abs(v);
V = V0.*((w.^2)*Y0);
RANGEV0(:,MRANGE(c,1)) = V0';
RANGEV(:,MRANGE(c,1)) = V';
% CURRENT ESTIMATION
j = (num./((den+denV2)*rl));
I0 = abs(j);
I = I0.*((w.^2)*Y0);
RANGEI0(:,MRANGE(c,1)) = I0';
RANGEI(:,MRANGE(c,1)) = I';
% POWER ESTIMATION
p = v.*j;
P0 = abs(p);
P = P0.*(((w.^2)*Y0).^2);
RANGEP0(:,MRANGE(c,1)) = P0';
RANGEP(:,MRANGE(c,1)) = P';
% PLOTTING DATA
% Input the legend, title, and lables for Axis. Assign the Range variable
% VOLTAGE, CURRENT or POWER for plot (Use RANGEV0, RANGEI0 or RANGEP0 respectively).
xlab = "Frequency (Hz)";
ylab = "FRF Voltage (V / Base Acceleration) ";
tit = "FRF Voltage Variation with the Length(m)";
legS = "Length ";
for Range = RANGEV0
figure(1);
labels = {};
colororder = get (gca, "colororder");
end
for c = VRANGE
hold on
h = plot (f,Range(c,:));
hold on;
set (h, "color", colororder(c,:));
labels = [labels(:)', {[legS, num2str(MRANGE(c,2))]}];
hold off
end
hx = xlabel({xlab},"fontsize",12);
ylabel(ylab,"fontsize", 12);
grid on;
title (tit,"fontsize",12);
legend (labels);
print -djpg figure1.jpg;
0 Kommentare
Akzeptierte Antwort
KSSV
am 18 Mai 2022
There is a problem in creating the legend string. I have modififed the code, now error is rectified. But your code is messy. You have to make many changes.
%% ------Energy Harvesting using Piezo Material with Cantilever Structures------
% This promgram intend to use the Continuous Vibration Equation for estimate
% the power generation of a cantilever fully covered by piezoelectric material
% The Math background is provided by the paper "A Distributed Parameter
% Electromechanical Model For Cantilevered Piezoelectric Energy Harvesters" by
% A.Erturk and D.J.Inman.
clear ; close all; clc
%----------------------------INPUT PARAMETERS----------------------------------%
% This simulation can range diffente input parameters and then plot it. Choose
% one parameter and replace by MRANGE(c,2) variable. The MRANGE(c,2) will change
% According to the RANGE Variable bellow
% RANGE MODULE
RANGE = 0.1:0.1:0.5; % Range for used for change the parameters (MAX: 8)
VRANGE = 1:length(RANGE); % Vector with same size of the RANGE;
MRANGE = [VRANGE',RANGE']; % Matrix with The the Index of RANGE
F = 1:0.1:100; % Frequency Range (Hz)
RANGEV0 = ones(length(F),length(RANGE)); % Matrix for Voltage simulation data
RANGEI0 = ones(length(F),length(RANGE)); % Matrix for Current simulation data
RANGEP0 = ones(length(F),length(RANGE)); % Matrix for Power simulation data
% MECHANICAL PARAMETER INPUT
% Beam Support
for c = VRANGE
leB = MRANGE(c,2); % Lenght of the Beam (m)
wiB = 0.02; % Widht of the Beam (m)
thB = 0.0005; % Thickness of the Beam (m)
yoB = 100000000000; % Young's Modulos of the Beam kgf/m2
deB = 7165; % Material Density (kg/m3)
% Piezoelectric material
leP = leB; % Lenght of the Piezo (m) OBS: SHOULD BE SAME AS THE BEAM
wiP = wiB; % Widht of the Piezo (m)
thP = 0.0004; % Thickness of the Piezo (m)
deP = 7800; % Material Density of Piezo (kg/m3)
yoP = 66000000000; % Young's Modulos of the Piezo
% ELECTRICAL PARAMETER INPUT
% Piezoelectric material
d31 = -190*(10^-12); % Piezoelectric Constant at 31 Direction
e33 = 15.93*(10^-9); % Piezoelectric Dielectric Constant (F/m)
% BASE HARMONIC VIBRATION
Y0 = 0.000001; % Peak Displacement of the base (m)
f = F; % Frequency Range (Hz)
w = 2*pi()*f; % Angular frequency (Hz)
end
% ---------------------------FIRST CALCULATIONS--------------------------------%
% CALCULATING THE MASS DENSINTY
% The mass density is the total mass of the system dived by the total length of
% the Beam
volB = thB*wiB*leB;
volP = thP*wiP*leP;
maB = deB*volB;
maP = deP*volP;
massden = (maB+maP)/leB; % (kg/m)
% LOAD RESISTOR
% Resistor conected to the Piezo
rl = 1000000 ;% Ohms
% POSITION RELATIVE TO NEUTRAL AXIS
% The procedure of finding the position of the neutral axis of a composite cross
% section is transform the cross section to a homogeneous cross section of
% single Young’s modulus (Described in Timoshenko and Young Reference)
nY = yoB/yoP; % Ratio of Young's Modulos
hpa = ((thP ^ 2) + (2*nY*thP*thB) + (nY*(thB ^ 2)))/(2*(thP + (nY*thB))); % Distance from the top of the Piezo Layer to the Neutral Axis
hsa = ((thP ^ 2) + (2*thP*thB) + (nY*(thB ^ 2)))/(2*(thP + (nY*thB))); % Distance from the Bottom of the Piezo Layer to the Neutral Axis
hpc = (nY*thB*(thP + thB))/(2*(thP + (nY*thB))); % Distance from the Center of the Piezo Layer to the Neutral Axis
ha = -hsa; % Position of the bottom of the substructure layer from the neutral axis
hb = hpa - thP; % Position of the bottom of the Piezo layer from the neutral axis
hc = hpa; % Position of the top of the layer from the neutral axis
% BENDING STIFFNESS
yi = wiB*(((yoB*((hb^3)-(ha^3))) + (yoP*((hc^3) - (hb^3))))/3);
% COUPLING TERM
coup = - (((yoP*d31*wiB) / ((2*thP))*((hc^2) -(hb^2))));
% UNDAMPED NATURAL FREQUENCY OF THE BEAM
% The sigma constant for Cantilever Structuree is provide by the literature.
% The Solution for sigma is solving the equation 1 + cos (sig) cosh (sig) = 0
% For the three first modes we have:
sig1 = 1.875104069;
sig2 = 4.694091133;
sig3 = 7.854757438;
sig = [sig1;sig2;sig3];
wr1 = (sig1^2) * ((yi / (massden*(leB^4)))^0.5);
wr2 = (sig2^2) * ((yi / (massden*(leB^4)))^0.5);
wr3 = (sig3^2) * ((yi / (massden*(leB^4)))^0.5);
wr = [wr1;wr2;wr3];
% EIGENFUNCTIONS UNDAMPED FREE VIBRATION
ho = ((cosh(sig) + cos(sig))./(sin(sig) + sinh(sig)));
x = leB;
var = ((sig*x)./leB);
eigeinf = ((1/(massden*leB))^0.5).*(cosh(var) - cos(var) - (ho.*(sinh(var)-sin(var))));
% BENDING SLOPE (DERIVATE OF EIGENFUNCTIONS)
bendS = ((1/(massden*leB))^0.5)*(((sig./leB).* sinh(var)) + ((sig./leB).* sin(var)) - (ho.*(((sig./leB).*cosh(var))-((sig./leB).* cos(var)))));
% INTEGRATION OF THE EIGENFUNCTIONS
inteia = ((1/(massden*leB))^0.5)*((sinh(var)./(sig./leB)) - (sin(var)./(sig./leB)) - (ho.*((cosh(var)./(sig./leB))+(cos(var)./(sig./leB)))));
intei0 = ((1/(massden*leB))^0.5)*((sinh(0)./(sig./leB)) - (sin(0)./(sig./leB)) - (ho.*((cosh(0)./(sig./leB))+(cos(0)./(sig./leB)))));
intei = inteia - intei0;
% TIME CONSTANT OF THE PIEZO REPRESENTATION CIRCUIT
tc = (rl*e33*wiP*leP) / thP;
% MODAL CONSTANT TERM
mco = -(((d31*yoP*hpc*thP)/(e33*leB)) * bendS);
% MODAL COUPLING TERM
mc = coup * bendS;
% MODAL DAMPING (ASSUMING DAMPING RATIOS ZETA 1 = 0.01 AND ZETA 2 = 0.013)
ca = 0.654961133;
csI = 1.216501665*(10^-6);
zeta = ((csI*wr)/(2*yi))+ (ca./(2*wr*massden));
% VOLTAGE ESTIMATION
modes = 3;
fs = size(f);
numV = ones(modes,fs(2));
denV = ones(modes,fs(2));
for b = 1:modes
numV(b,:) = ((-1i*massden*w*mco(b)*intei(b))./(((wr(b)^2)-(w.^2)) + (1i*2*zeta(b)*wr(b)*w)));
denV(b,:) = ((1i*w*mc(b)*mco(b))./(((wr(b)^2)-(w.^2)) + (1i*2*zeta(b)*wr(b)*w)));
end
num = numV(1,:) + numV(2,:) + numV(3,:);
den = denV(1,:) + denV(2,:) + denV(3,:);
denV2 =((1 + (1i*w*tc))/tc);
v = num./(den+denV2);
V0 = abs(v);
V = V0.*((w.^2)*Y0);
RANGEV0(:,MRANGE(c,1)) = V0';
RANGEV(:,MRANGE(c,1)) = V';
% CURRENT ESTIMATION
j = (num./((den+denV2)*rl));
I0 = abs(j);
I = I0.*((w.^2)*Y0);
RANGEI0(:,MRANGE(c,1)) = I0';
RANGEI(:,MRANGE(c,1)) = I';
% POWER ESTIMATION
p = v.*j;
P0 = abs(p);
P = P0.*(((w.^2)*Y0).^2);
RANGEP0(:,MRANGE(c,1)) = P0';
RANGEP(:,MRANGE(c,1)) = P';
% PLOTTING DATA
% Input the legend, title, and lables for Axis. Assign the Range variable
% VOLTAGE, CURRENT or POWER for plot (Use RANGEV0, RANGEI0 or RANGEP0 respectively).
xlab = "Frequency (Hz)";
ylab = "FRF Voltage (V / Base Acceleration) ";
tit = "FRF Voltage Variation with the Length(m)";
legS = "Length ";
for Range = RANGEV0
figure(1);
colororder = get (gca, "colororder");
end
labels = cell(size(VRANGE)) ;
for c = VRANGE
hold on
h = plot (f,Range(c,:));
hold on;
set (h, "color", colororder(c,:));
labels{c} =strcat('Length = ',num2str(MRANGE(c,2)));
hold off
end
hx = xlabel({xlab},"fontsize",12);
ylabel(ylab,"fontsize", 12);
grid on;
title (tit,"fontsize",12);
legend (labels);
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu 2-D and 3-D Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!