Hi all, how to create image datasets. I need them to train neural networks. I have about 15 to 20 images and I need to turn these images into an image dataset. Please.
24 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Nurul Farhana Mohd Fadzli
am 16 Mai 2022
Kommentiert: yanqi liu
am 20 Mai 2022
I have tried to find the way to build image dataset but all of the example are using Python. But i want to use Matlab. Please help me.
0 Kommentare
Akzeptierte Antwort
Abhijit Bhattacharjee
am 19 Mai 2022
This is easy to do in MATLAB! You can put all your images into a folder and use the imageDatastore command.
imds = imageDatastore("name_of_image_folder");
2 Kommentare
Abhijit Bhattacharjee
am 19 Mai 2022
What you do next depends on your application. In your original question, you asked what you need to make a dataset. The code I provided should be sufficient for that.
Weitere Antworten (1)
yanqi liu
am 20 Mai 2022
yes,sir,may be use cnn transfer to train model,such as
unzip('MerchData.zip');
% use image folder to get dataset
imds = imageDatastore('MerchData','IncludeSubfolders',true,'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
% use Alexnet to get cnn model
alex_net = alexnet;
class_number = length(unique(imds.Labels));
alex_net_share = alex_net.Layers(1:end-3);
alex_net_add = [
fullyConnectedLayer(class_number,'Name','fc8','WeightLearnRateFactor',10, 'BiasLearnRateFactor',20)
softmaxLayer('Name','softmax')
classificationLayer('Name','classification')
];
layers_1 = [alex_net_share
alex_net_add];
% train
augimdsTrain = augmentedImageDatastore([227 227],imdsTrain);
augimdsValidation = augmentedImageDatastore([227 227],imdsValidation);
miniBatchSize = 10;
valFrequency = floor(numel(augimdsTrain.Files)/miniBatchSize);
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',5, ...
'InitialLearnRate',3e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',valFrequency, ...
'Verbose',false);
trainedNet = trainNetwork(augimdsTrain,layers_1,options);
% test
[YPred,probs] = classify(trainedNet,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels)
% app
idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
subplot(2,2,i)
I = readimage(imdsValidation,idx(i));
imshow(I)
label = YPred(idx(i));
title(string(label) + ", " + num2str(100*max(probs(idx(i),:)),3) + "%");
end
2 Kommentare
yanqi liu
am 20 Mai 2022
yes,sir,let us check the folder MerchData,we can find that one subfolder is one class,so if use our data,we can just make a new subfolder, and use name as subfolder name
then put images in it,and run code
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!