Solve system of equations without Symbolic Math Toolbox for Compiler
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Daniel Wirth
am 12 Mai 2022
Beantwortet: Song-Hyun Ji
am 14 Jun. 2023
I have a system of 3 equations with 3 unknowns (X_sym, AbS_sym, AbB_sym) in my code and I want to solve it for different combinations of variables stored in vlist.
At the moment, I am using 'syms' and 'vpasolve' and it works fine:
syms AbB_sym AbS_sym X_sym
symvar_AbB_sym = parallel.pool.Constant(AbB_sym);
symvar_AbS_sym = parallel.pool.Constant(AbS_sym);
symvar_X_sym = parallel.pool.Constant(X_sym);
parfor i = 1:size(vlist,1)
X_sym = symvar_X_sym.Value;
AbS_sym = symvar_AbS_sym.Value;
AbB_sym = symvar_AbB_sym.Value;
eqns = [(X_sym*AbB_sym*AbS_sym)/(vlist(i,4)*vlist(i,5)) + 2*(X_sym*AbS_sym^2)/vlist(i,5)^2 + ...
(X_sym*AbS_sym)/vlist(i,5) + AbS_sym == vlist(i,1),...
(X_sym*AbB_sym*AbS_sym)/(vlist(i,4)*vlist(i,5)) + 2*(X_sym*AbB_sym^2)/vlist(i,4)^2 + ...
(X_sym*AbB_sym)/vlist(i,4) + AbB_sym == vlist(i,2),...
(X_sym*AbB_sym*AbS_sym)/(vlist(i,4)*vlist(i,5)) + (X_sym*AbB_sym^2)/vlist(i,4)^2 + ...
(X_sym*AbS_sym^2)/vlist(i,5)^2 + ...
(X_sym*AbB_sym)/vlist(i,4) + (X_sym*AbS_sym)/vlist(i,5) + X_sym == vlist(i,3)];
S = vpasolve(eqns,[X_sym AbB_sym AbS_sym],[0 Inf; 0 Inf;0 Inf]);
X(i,1) = S.X_sym;
AbB(i,1) = S.AbB_sym;
AbS(i,1) = S.AbS_sym;
end
However, I cannot use this approach, as I cannot compile my app into a standalone app with syms and vpasolve.
I tried looking into 'matlabfunction' according to this article:
But I don't think it is applicable here since I have a system of equations. Am I right?
How can I modify the code so it could be compiled into a standalone app?
Any help is appreciated! Thanks!
0 Kommentare
Akzeptierte Antwort
Torsten
am 12 Mai 2022
Did you try "solve" on your system of equations with the numerical vlist coeffcients replaced also by symbolic variables ?
syms AbB_sym AbS_sym X_sym vlist1 vlist2 vlist3 vlist4 vlist5
eqns = [(X_sym*AbB_sym*AbS_sym)/(vlist4*vlist5) + 2*(X_sym*AbS_sym^2)/vlist5^2 + ...
(X_sym*AbS_sym)/vlist5 + AbS_sym == vlist1,...
(X_sym*AbB_sym*AbS_sym)/(vlist4*vlist5) + 2*(X_sym*AbB_sym^2)/vlist4^2 + ...
(X_sym*AbB_sym)/vlist4 + AbB_sym == vlist2,...
(X_sym*AbB_sym*AbS_sym)/(vlist4*vlist5) + (X_sym*AbB_sym^2)/vlist4^2 + ...
(X_sym*AbS_sym^2)/vlist5^2 + ...
(X_sym*AbB_sym)/vlist4 + (X_sym*AbS_sym)/vlist5 + X_sym == vlist3];
S = solve(eqns,[X_sym AbB_sym AbS_sym])
If this does not work, you will have to use the numerical solver "fsolve" for your system of equations.
Weitere Antworten (1)
Song-Hyun Ji
am 14 Jun. 2023
You can get the solution in the following answers page.
- How to deploy when using 'syms' and 'solve' with function input arguments to consist the equation in MATLAB Compiler
0 Kommentare
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!