Reimann sum and numerical integration
17 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
DM
am 25 Jan. 2015
Kommentiert: Star Strider
am 25 Jan. 2015
I am trying to solve the functions below numerically using MATLAB
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/146914/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/146915/image.png)
This is my code where I have used "integral" command to solve for the second integral, while I used Reimann sum to solve for the first. Take for example c=1/128.
x= -1/128:0.0001:1/128;
for j=1:length(x)
den= @(y) pi^2.* sqrt(1- (x(j)+y).^2) .* sqrt(1- y.^2);
fun= @(y) 1./den(y);
ymin= max(-0.999,-0.999-x(j));
ymax= min(0.999,0.999-x(j));
pdfX(j)=integral(fun,ymin,ymax);
end
sum1=0;
for j=1:length(omegat)
func1(j)=pdfX(j)*0.0001;
sum1=sum1+func1(j);
end
F=sum1;
Do you think it is correct? Are there any other ways to make it more accurate?
Thanks
0 Kommentare
Akzeptierte Antwort
Star Strider
am 25 Jan. 2015
I would likely use either trapz or cumtrapz to calculate ‘F’, but otherwise I see no problems.
3 Kommentare
Star Strider
am 25 Jan. 2015
F = trapz(x, pdfX)
Avoiding the singularity is likely a good move. I doubt that substituting -0.999 would produce significant error. You might want to experiment with (1-1E-8) instead if you are curious.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!