Calculate the required area
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Nikodin Sedlarevic
am 30 Apr. 2022
Bearbeitet: Riccardo Scorretti
am 30 Apr. 2022
I would like to paint a building (all 5 surfaces) that has 4 vertical straight walls, the upper surface (roof) is described by the function z = g (x, y) for (x, y) ∈ [0.0,4.40] × [0.0, 4.20]. The lower edge of the building is at a height of z (x, y) ≡0. Calculate the required area.
This is the area I would like to calculate
I tried to calculate like this but it does not get me the right answer. Any help?
g = @(x, y) 1./((2+1.1.*x.^2+1.1.*y.^2).^(1/2));
a=0.0;
b=4.40;
c=0.0;
d=4.20;
s1= 1./((2+1.1.*(0.0).^2+1.1.*(0.0).^2).^(1/2));
s2= 1./((2+1.1.*(4.40).^2+1.1.*(4.20).^2).^(1/2));
s3= 1./((2+1.1.*(0.0).^2+1.1.*(4.20).^2).^(1/2));
s4= 1./((2+1.1.*(4.40).^2+1.1.*(0.0).^2).^(1/2));
roof = integral2(g,a,b,c,d);
wall1 = integral2(g,a,b,0,s1);
wall2 = integral2(g,a,b,0,s2);
wall3 = integral2(g,c,d,0,s3);
wall4 = integral2(g,c,d,0,s4);
area = roof + wall1 + wall2 + wall3 + wall4;
1 Kommentar
Riccardo Scorretti
am 30 Apr. 2022
In this way you are computing volumes, not surfaces. The problem is with mathematics, not with MATLAB.
Akzeptierte Antwort
Riccardo Scorretti
am 30 Apr. 2022
Bearbeitet: Riccardo Scorretti
am 30 Apr. 2022
Let's start by checking the function g = profile of your building:
g = @(x, y) 1./((2+1.1.*x.^2+1.1.*y.^2).^(1/2));
a=0.0;
b=4.40;
c=0.0;
d=4.20;
[x, y] = meshgrid(a:0.4:b, c:0.4:d);
figure ; mesh(x, y, g(x,y)) ; axis image ; grid on ;
axis([a, b, c, d, 0 inf]);
camproj perspective ; box on
xlabel('x') ; ylabel('y');
For the 4 walls, the computation boils up into a simple 1D integral:
wall1 = integral(@(x) g(x,c), a, b)
wall3 = integral(@(x) g(x,d), a, b)
and
wall2 = integral(@(y) g(a,y), c, d)
wall4 = integral(@(y) g(b,y), c, d)
The case of the roof is quite different: it is a 2D integral of the surface given defined by the map , that is:
Assuming that g is given as a numerical function (and not analytically), the derivatives must be computed numerically as well, for instance by finite difference. This will introduce some numerical error, which will be quite negligible if the surface is smooth enough:
dx = 1.0E-5 ; dy = dx;
gx = @(x,y) (g(x+dx,y) - g(x-dx,y))/(2*dx);
gy = @(x,y) (g(x,y+dy) - g(x,y-dy))/(2*dy);
roof = integral2(@(x,y) sqrt(1 + gx(x,y).^2 + gy(x,y).^2), a, b, c, d)
The bottom line is:
tot = wall1 + wall2 + wall3 + wall4 + roof
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Smoothing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!