collecting data for chi squared test

3 Ansichten (letzte 30 Tage)
Christos Papagrigoriou
Christos Papagrigoriou am 29 Apr. 2022
Beantwortet: Voss am 30 Apr. 2022
Hello,
I have this data. I import it into matlab and and I need to fill that table out. Can you please give me a hint on how to fill it in a time efficient manner.
  2 Kommentare
Rik
Rik am 29 Apr. 2022
If you post the non-efficient code, we can help you optimize it.
Christos Papagrigoriou
Christos Papagrigoriou am 30 Apr. 2022
Hello,
table1 = (strcmp(NSCLCR01RadiogenomicDATALABEL.KrasMutation, 'Mutant') & strcmp(NSCLCR01RadiogenomicDATALABEL.SmokingStatus, 'Current'), :);
It turns back a hollow table 0x17

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Voss
Voss am 30 Apr. 2022
C = readcell('NSCLCR01Radiogenomic_DATA_LABEL.xlsx');
C(:,[4 6 8 10 18:end]) = [];
headers = C(1,:);
C(1,:) = [];
t = cell2table(C,'VariableNames',headers)
t = 210×13 table
Case ID Patient affiliation Age at Histological Diagnosis Gender Smoking status Histology EGFR mutation status KRAS mutation status ALK translocation status Adjuvant Treatment Chemotherapy Radiation Recurrence ___________ ___________________ _____________________________ __________ ______________ __________________ ____________________ ____________________ ________________________ __________________ ____________ _________ __________ {'AMC-001'} {'Stanford'} 34 {'Male' } {'Nonsmoker'} {'Adenocarcinoma'} {'Wildtype' } {'Mutant' } {'Wildtype' } {'No' } {'No' } {'No'} {'yes'} {'AMC-002'} {'Stanford'} 33 {'Female'} {'Nonsmoker'} {'Adenocarcinoma'} {'Wildtype' } {'Wildtype' } {'Not collected'} {'No' } {'No' } {'No'} {'no' } {'AMC-003'} {'Stanford'} 69 {'Female'} {'Nonsmoker'} {'Adenocarcinoma'} {'Mutant' } {'Wildtype' } {'Wildtype' } {'No' } {'No' } {'No'} {'no' } {'AMC-004'} {'Stanford'} 80 {'Female'} {'Nonsmoker'} {'Adenocarcinoma'} {'Wildtype' } {'Wildtype' } {'Wildtype' } {'No' } {'No' } {'No'} {'no' } {'AMC-005'} {'Stanford'} 76 {'Male' } {'Former' } {'Adenocarcinoma'} {'Mutant' } {'Wildtype' } {'Wildtype' } {'No' } {'No' } {'No'} {'yes'} {'AMC-006'} {'Stanford'} 80 {'Female'} {'Former' } {'Adenocarcinoma'} {'Wildtype' } {'Not collected'} {'Not collected'} {'No' } {'No' } {'No'} {'no' } {'AMC-007'} {'Stanford'} 56 {'Female'} {'Nonsmoker'} {'Adenocarcinoma'} {'Wildtype' } {'Wildtype' } {'Not collected'} {'No' } {'No' } {'No'} {'no' } {'AMC-008'} {'Stanford'} 65 {'Female'} {'Former' } {'Adenocarcinoma'} {'Not collected'} {'Mutant' } {'Not collected'} {'No' } {'No' } {'No'} {'no' } {'AMC-009'} {'Stanford'} 61 {'Male' } {'Former' } {'Adenocarcinoma'} {'Wildtype' } {'Mutant' } {'Wildtype' } {'No' } {'No' } {'No'} {'no' } {'AMC-010'} {'Stanford'} 42 {'Female'} {'Nonsmoker'} {'Adenocarcinoma'} {'Mutant' } {'Wildtype' } {'Wildtype' } {'No' } {'No' } {'No'} {'no' } {'AMC-011'} {'Stanford'} 66 {'Female'} {'Former' } {'Adenocarcinoma'} {'Wildtype' } {'Mutant' } {'Wildtype' } {'Yes'} {'Yes'} {'No'} {'yes'} {'AMC-012'} {'Stanford'} 70 {'Female'} {'Nonsmoker'} {'Adenocarcinoma'} {'Mutant' } {'Wildtype' } {'Wildtype' } {'No' } {'No' } {'No'} {'yes'} {'AMC-013'} {'Stanford'} 67 {'Female'} {'Nonsmoker'} {'Adenocarcinoma'} {'Mutant' } {'Wildtype' } {'Wildtype' } {'No' } {'No' } {'No'} {'no' } {'AMC-014'} {'Stanford'} 78 {'Female'} {'Former' } {'Adenocarcinoma'} {'Wildtype' } {'Wildtype' } {'Wildtype' } {'No' } {'No' } {'No'} {'no' } {'AMC-015'} {'Stanford'} 58 {'Male' } {'Former' } {'Adenocarcinoma'} {'Wildtype' } {'Mutant' } {'Not collected'} {'No' } {'No' } {'No'} {'no' } {'AMC-016'} {'Stanford'} 65 {'Male' } {'Former' } {'Adenocarcinoma'} {'Wildtype' } {'Wildtype' } {'Wildtype' } {'No' } {'No' } {'No'} {'no' }
t_mutant_smokers = t(strcmp(t{:,'KRAS mutation status'},'Mutant') & strcmp(t{:,'Smoking status'},'Current'),:)
t_mutant_smokers = 8×13 table
Case ID Patient affiliation Age at Histological Diagnosis Gender Smoking status Histology EGFR mutation status KRAS mutation status ALK translocation status Adjuvant Treatment Chemotherapy Radiation Recurrence ___________ ___________________ _____________________________ __________ ______________ __________________ ____________________ ____________________ ________________________ __________________ ____________ _________ __________ {'R01-003'} {'VA' } 65 {'Male' } {'Current'} {'Adenocarcinoma'} {'Mutant' } {'Mutant'} {'Wildtype'} {'No' } {'No' } {'No' } {'no' } {'R01-024'} {'VA' } 52 {'Male' } {'Current'} {'Adenocarcinoma'} {'Unknown' } {'Mutant'} {'Unknown' } {'No' } {'No' } {'No' } {'yes'} {'R01-053'} {'VA' } 62 {'Male' } {'Current'} {'Adenocarcinoma'} {'Wildtype'} {'Mutant'} {'Wildtype'} {'No' } {'No' } {'No' } {'no' } {'R01-054'} {'VA' } 56 {'Male' } {'Current'} {'Adenocarcinoma'} {'Wildtype'} {'Mutant'} {'Wildtype'} {'Yes'} {'Yes'} {'Yes'} {'yes'} {'R01-095'} {'VA' } 74 {'Male' } {'Current'} {'Adenocarcinoma'} {'Wildtype'} {'Mutant'} {'Wildtype'} {'No' } {'No' } {'No' } {'no' } {'R01-097'} {'VA' } 70 {'Male' } {'Current'} {'Adenocarcinoma'} {'Wildtype'} {'Mutant'} {'Wildtype'} {'No' } {'No' } {'No' } {'no' } {'R01-116'} {'VA' } 54 {'Male' } {'Current'} {'Adenocarcinoma'} {'Wildtype'} {'Mutant'} {'Wildtype'} {'No' } {'No' } {'No' } {'no' } {'R01-137'} {'Stanford'} 50 {'Female'} {'Current'} {'Adenocarcinoma'} {'Wildtype'} {'Mutant'} {'Wildtype'} {'No' } {'No' } {'No' } {'no' }

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics and Optimization finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by