Find intersections of curves

4 Ansichten (letzte 30 Tage)
SAM
SAM am 24 Apr. 2022
Bearbeitet: Torsten am 24 Apr. 2022
hello, I have the following two formulas and I want to know How can I find the intersection point of the two curves and how to mark it on the graph?
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(2*bL);
f22=sin(2*(ab)*bL);
fplot(bL,f12,'-or');
hold on
fplot(bL,f22,'-ob');
thank you

Akzeptierte Antwort

Matt J
Matt J am 24 Apr. 2022
Bearbeitet: Matt J am 24 Apr. 2022
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(bL);
f22=sin(2*(ab)*bL);
bLmax=fzero(matlabFunction(f12-f22) ,2 );
rts=[-bLmax,0,+bLmax];
fnum=matlabFunction(f12);
fplot(bL,f12,'-r');
hold on
fplot(bL,f22,'-b');
plot(rts,fnum(rts),'ok','MarkerFaceColor','k')
hold off
xlim([-3,3])
ylim([-0.001,0.001])

Weitere Antworten (2)

Torsten
Torsten am 24 Apr. 2022
bL = 0 is the intersection point.
hold on
plot(0,0,'.')
  2 Kommentare
SAM
SAM am 24 Apr. 2022
I want a value other than 0
Torsten
Torsten am 24 Apr. 2022
Bearbeitet: Torsten am 24 Apr. 2022
a = 8.0901e-5;
fun1 = @(a,x) a*sinh(x);
fun2 = @(a,x) sin(2*a*x);
f=@(a,x)fun1(a,x)-fun2(a,x)
x1 = fzero(@(x)f(a,x),[2,2.5])
x2 = fzero(@(x)f(a,x),[-3,-2])
x=-2.5:0.01:2.5;
plot(x,fun1(a,x))
hold on
plot(x,fun2(a,x))
hold on
plot(x1,fun1(a,x1),'.')
hold on
plot(x2,fun1(a,x2),'.')
hold on
plot(0,0,'.')

Melden Sie sich an, um zu kommentieren.


Sam Chak
Sam Chak am 24 Apr. 2022
Bearbeitet: Sam Chak am 24 Apr. 2022
Try performing analysis on the problem first, before quickly attempting to solve it. The hyperbolic sine is unbounded. Do you think there are intersections other than the trivial solution at bL = 0? Seems there are another two at .

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by