Find intersections of curves
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
hello, I have the following two formulas and I want to know How can I find the intersection point of the two curves and how to mark it on the graph?
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(2*bL);
f22=sin(2*(ab)*bL);
fplot(bL,f12,'-or');
hold on
fplot(bL,f22,'-ob');
thank you
0 Kommentare
Akzeptierte Antwort
Matt J
am 24 Apr. 2022
Bearbeitet: Matt J
am 24 Apr. 2022
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(bL);
f22=sin(2*(ab)*bL);
bLmax=fzero(matlabFunction(f12-f22) ,2 );
rts=[-bLmax,0,+bLmax];
fnum=matlabFunction(f12);
fplot(bL,f12,'-r');
hold on
fplot(bL,f22,'-b');
plot(rts,fnum(rts),'ok','MarkerFaceColor','k')
hold off
xlim([-3,3])
ylim([-0.001,0.001])
0 Kommentare
Weitere Antworten (2)
Torsten
am 24 Apr. 2022
bL = 0 is the intersection point.
hold on
plot(0,0,'.')
2 Kommentare
Torsten
am 24 Apr. 2022
Bearbeitet: Torsten
am 24 Apr. 2022
a = 8.0901e-5;
fun1 = @(a,x) a*sinh(x);
fun2 = @(a,x) sin(2*a*x);
f=@(a,x)fun1(a,x)-fun2(a,x)
x1 = fzero(@(x)f(a,x),[2,2.5])
x2 = fzero(@(x)f(a,x),[-3,-2])
x=-2.5:0.01:2.5;
plot(x,fun1(a,x))
hold on
plot(x,fun2(a,x))
hold on
plot(x1,fun1(a,x1),'.')
hold on
plot(x2,fun1(a,x2),'.')
hold on
plot(0,0,'.')
Sam Chak
am 24 Apr. 2022
Bearbeitet: Sam Chak
am 24 Apr. 2022
Try performing analysis on the problem first, before quickly attempting to solve it. The hyperbolic sine is unbounded. Do you think there are intersections other than the trivial solution at bL = 0? Seems there are another two at
.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/976395/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/976390/image.png)
0 Kommentare
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!