Find intersections of curves
    4 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
hello, I have the following two formulas and I want to know How can I find the intersection point of the two curves and how to mark it on the graph?
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(2*bL);
f22=sin(2*(ab)*bL);
fplot(bL,f12,'-or');
hold on
fplot(bL,f22,'-ob');
thank you 
0 Kommentare
Akzeptierte Antwort
  Matt J
      
      
 am 24 Apr. 2022
        
      Bearbeitet: Matt J
      
      
 am 24 Apr. 2022
  
      syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(bL);
f22=sin(2*(ab)*bL);
bLmax=fzero(matlabFunction(f12-f22)  ,2 );
rts=[-bLmax,0,+bLmax];
fnum=matlabFunction(f12);
fplot(bL,f12,'-r');
hold on
fplot(bL,f22,'-b');
plot(rts,fnum(rts),'ok','MarkerFaceColor','k')
hold off
xlim([-3,3])
ylim([-0.001,0.001])
0 Kommentare
Weitere Antworten (2)
  Torsten
      
      
 am 24 Apr. 2022
        bL = 0 is the intersection point.
hold on
plot(0,0,'.')
2 Kommentare
  Torsten
      
      
 am 24 Apr. 2022
				
      Bearbeitet: Torsten
      
      
 am 24 Apr. 2022
  
			  a = 8.0901e-5;
  fun1 = @(a,x) a*sinh(x);
  fun2 = @(a,x) sin(2*a*x);
  f=@(a,x)fun1(a,x)-fun2(a,x)
  x1 = fzero(@(x)f(a,x),[2,2.5])
  x2 = fzero(@(x)f(a,x),[-3,-2])
  x=-2.5:0.01:2.5;
  plot(x,fun1(a,x))
  hold on
  plot(x,fun2(a,x))
  hold on
  plot(x1,fun1(a,x1),'.')
  hold on
  plot(x2,fun1(a,x2),'.')
  hold on
  plot(0,0,'.')
  Sam Chak
      
      
 am 24 Apr. 2022
        
      Bearbeitet: Sam Chak
      
      
 am 24 Apr. 2022
  
      Try performing analysis on the problem first, before quickly attempting to solve it. The hyperbolic sine is unbounded. Do you think there are intersections other than the trivial solution at bL = 0? Seems there are another two at  .
.
 .
.
0 Kommentare
Siehe auch
Kategorien
				Mehr zu Calculus finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!





