Linear regression : How to take into account the quadratic term only and not the linear term ?

3 Ansichten (letzte 30 Tage)
Hello everyone,
I am currently working on a linear regression using the fitlm tool. I collect my datas from a table name "newT2" that has 3 columns.
Here is my code :
modelaction = 'Var1 ~ Var2 + Var3^2';
mdlaction = fitlm(newT2, modelaction);
The problem is that the regression is done according this equation : 'Var1 ~ Var2 + Var3+ Var3^2'. But it's not what I asked, I don't want the linear term Var3.
In fact, if I run with the equation 'Var1 ~ Var2 + Var3^3', the regression is done according : 'Var1 ~ Var2 + Var3+ Var3^2 + Var3^3' and so on.
Thanks for your help !
  1 Kommentar
Torsten
Torsten am 22 Apr. 2022
Bearbeitet: Torsten am 22 Apr. 2022
If nothing helps, square Var3 in newT2 and use a linear model:
modelaction = 'Var1 ~ Var2 + Var3_squared';

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Star Strider
Star Strider am 22 Apr. 2022
Suppress the intercept term and the linear ‘Var3’ by negating them —
newT2 = array2table(rand(7,3)) % Create Data Table
newT2 = 7×3 table
Var1 Var2 Var3 _______ _______ ________ 0.9339 0.56678 0.7716 0.86767 0.18461 0.039493 0.95488 0.51097 0.95676 0.53864 0.8246 0.86486 0.23089 0.41095 0.76704 0.93338 0.12252 0.19638 0.91871 0.38145 0.6025
modelaction = 'Var1 ~ - 1 + Var2 - Var3 + Var3^2'; % Specify Model
mdlaction = fitlm(newT2, modelaction)
mdlaction =
Linear regression model: Var1 ~ Var2 + Var3^2 Estimated Coefficients: Estimate SE tStat pValue ________ ______ ________ _______ Var2 1.7668 1.4213 1.2431 0.26895 Var3^2 -0.38241 1.2132 -0.31521 0.76534 Number of observations: 7, Error degrees of freedom: 5 Root Mean Squared Error: 0.572
.

Kategorien

Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by