Using Runge-Kutta algorithm to solve second order ODE
26 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
For this task I need to create a program which manually uses the RK algorithm to solve a second order ODE. I'm trying to get my head around it but I think I'm going at it in the wrong way.
My original function is
with given values for m, F0 and w, so I have rearranged it to x'' = 50sin(8*pi*t)-x'-50x
I've then switched x' for y and rearranged to get 50sin(8*pi*t) = y' + y + 50x and this is what I'm using in the script. I need to plot x(t) and y(t) but at this point I'm just trying to find values for x and y over time.
The method I've used to get this far is below the code. Excuse my poor code. Thanks in advance.
PS I'm not allowed to use a function like ode45 to solve it for me.
close all; clear; clc;
t=0;x=0;y=0;
dy=myfunction(t,x,y)
x0=0;y0=0
h = 0.5;
for t=0:5.5
dx1 = h*y
dy1 = h*dy
dx2 = h*(y+(dy1/2))
dy2 = h*myfunction(t+(h/2),x+(dx1/2),y+(dy1/2))
dx3 = h*(y+(dy2/2))
dy3 = h*myfunction(t+(h/2),x+(dx2/2),y+(dy1/2))
dx4 = h*(y+dy3)
dy4 = h*myfunction(t+h,x+dx3,y+dy1)
deltax = (dx1+(2*dx2)+(2*dx3)+dx4)/6
deltay = (dy1+(2*dy2)+(2*dy3)+dy4)/6
xth = x+deltax
yth = y+deltay
x=xth
y=yth
t = t+h
end
function [dy] = myfunction(t,x,y)
dy=(50*sin(8*pi*t))-(50*x)-y;
end
Method used (I swapped v for y):

0 Kommentare
Antworten (1)
Torsten
am 22 Apr. 2022
Can you take it from here ?
%Solves y'' - (-exp(-B*t)-y+5*exp(-2*t)-2*exp(-(B+2)*t)+exp(-B*t)+t) = 0
% t in [0 1]
% y(0) = 1, y'(0) = -1
% B = 4
tstart = 0.0;
tend = 1.0;
h = (tend - tstart)/20;
T = (tstart:h:tend).';
Y0 = [1 -1];
B = 4;
f = @(t,y) [y(2) -exp(-B*t)-y(1)+5*exp(-2*t)-2*exp(-(B+2)*t)+exp(-B*t)+t];
Y = runge_kutta_RK4(f,T,Y0);
plot(T,Y)
function Y = runge_kutta_RK4(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for i = 2:N
t = T(i-1);
y = Y(i-1,:);
h = T(i) - T(i-1);
k0 = f(t,y);
k1 = f(t+0.5*h,y+k0*0.5*h);
k2 = f(t+0.5*h,y+k1*0.5*h);
k3 = f(t+h,y+k2*h);
Y(i,:) = y + h/6*(k0+2*k1+2*k2+k3);
end
end
2 Kommentare
Torsten
am 22 Apr. 2022
Bearbeitet: Torsten
am 22 Apr. 2022
For your function,
f = @(t,y) [y(2) F0/m*sin(omega*t)-c/m*y(2)-k/m*y(1)]
where
y(1) = y, y(2) = y'.
So you shouldn't work with x and y, but with a vector y=(y(1),y(2)) to make everything easier.
Of course, omega, F0, m and k have to be given values before.
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!