initial phase angle calculation
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
mouh nyquist
am 16 Jan. 2015
Kommentiert: mouh nyquist
am 27 Jan. 2015
hello
I have this signal
clear all;clc;
t=0:0.0001:10;
tt=t(1:100000);%take 100 000 samples
a=30*pi/180; %phase (calculated form deg. to rad.)
b=90*pi/180; %phase (calculated form deg. to rad.)
ia=5*cos(2*pi*10*tt-a)+7*cos(2*pi*50*tt-b);
fs=1/0.0001; %sampling frequency
X=fft(ia); %FFT
df=fs/length(X); %frequency resolution
f=(0:1:length(X)/2)*df; %frequency axis
subplot(2,1,1);
M=abs(X)/length(ia)*2; %amplitude spectrum
plot(f,M(1:length(f)));
subplot(2,1,2);
P=angle(X)*180/pi; %phase spectrum (in deg.)
plot(f,P(1:length(f)));
this technique do not give a good results; I want any technique to get the right "a" an "d" the initial phase angle of 10 HZ and 50 HZ;
I know it is a hard question but please help me
2 Kommentare
Akzeptierte Antwort
Jeremy
am 23 Jan. 2015
I ran your code it and seems to be working as-is. -30 and -90 deg at 10 and 50Hz
Weitere Antworten (1)
Jeremy
am 23 Jan. 2015
You can't expect them to be zero degrees just because there is no signal defined there. With no content at those frequencies, the angle shown will a result of spectral leakage and numerical noise. Zero degrees is no more valid than any other angle and you should always be looking a the PSD or something else to see which frequencies have a significant response.
3 Kommentare
Jeremy
am 27 Jan. 2015
This is the correct method, any other method will be a round about way of doing the same thing.
Siehe auch
Kategorien
Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!