How to vary an element in a matrix?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Reed Smith
am 20 Apr. 2022
Beantwortet: Star Strider
am 20 Apr. 2022
I want to be able to vary a matrix element between a set of certain values. Below is my code:
% System parameters
k1=180; k2=50; k3=220;
m1=1.1; m2=3.4;
% Stiffness and mass matrices
K=[k1+k2,-k2;-k2,k2+k3];
M=[m1,0;0,m2];
% Eigenvalues and natural frequencies
lambda=eig(K,M);
omega_nf=sqrt(lambda); disp(sort(omega_nf))
However, I want k1 to vary between 0.5*180:1.5*180. I know this doesn't work due to the dimensions of the arrays not being consistent. How could I make this work? I want to plot the eigenvalues against the varying k1.
Thank you for any help, it is appreciated.
0 Kommentare
Akzeptierte Antwort
Star Strider
am 20 Apr. 2022
% System parameters
k1=180 * linspace(0.5, 1.5, 9); % Define 'k1' As A Vector
k2=50;
k3=220;
m1=1.1; m2=3.4;
% Stiffness and mass matrices
K= @(k1) [k1+k2,-k2;-k2,k2+k3]; % Create Anonymoous Function
M=[m1,0;0,m2];
% Eigenvalues and natural frequencies
lambda=arrayfun(@(k1)eig(K(k1),M), k1, 'Unif',0); % Calculate 'lambda'
omega_nf=sqrt([lambda{:}]); disp(sort(omega_nf))
figure
plot(k1, omega_nf)
grid
.
0 Kommentare
Weitere Antworten (2)
Bruno Luong
am 20 Apr. 2022
Bearbeitet: Bruno Luong
am 20 Apr. 2022
% System parameters
k1=0.5*180:1.5*180;
k2=50; k3=220;
m1=1.1; m2=3.4;
% Stiffness and mass matrices
K1=reshape(k1,1,1,[]);
K=[K1+k2,0*K1-k2;0*K1-k2,0*K1+k2+k3];
M=[m1,0;0,m2];
% Eigenvalues and natural frequencies
lambda=eig2(pagemldivide(K,M));
omega_nf=sqrt(lambda);
plot(k1,sort(omega_nf)')
If not just do for-loop of k1
% System parameters
k1=0.5*180:1.5*180;
k2=50; k3=220;
m1=1.1; m2=3.4;
% Stiffness and mass matrices
omega_nf = zeros(2,length(k1));
for i=1:length(k1)
K=[k1(i)+k2,-k2;-k2,k2+k3];
M=[m1,0;0,m2];
% Eigenvalues and natural frequencies
lambda=eig(K,M);
omega_nf(:,i)=sqrt(lambda);
end
plot(k1,sort(omega_nf)')
0 Kommentare
Davide Masiello
am 20 Apr. 2022
clear,clc
k1 = 0.5*180:1.5*180;
k2 = 50;
k3 = 220;
m1 = 1.1;
m2 = 3.4;
omega_nf = zeros(2,length(k1));
for idx = 1:length(k1)
K = [k1(idx)+k2,-k2;-k2,k2+k3];
M = [m1,0;0,m2];
lambda = eig(K,M);
omega_nf(:,idx) = sqrt(lambda);
end
plot(k1,omega_nf)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!