MEX Function c++ vs c interface running speed

6 Ansichten (letzte 30 Tage)
Xuechao Qin
Xuechao Qin am 19 Apr. 2022
Bearbeitet: Xuechao Qin am 21 Apr. 2022
Hi Team,
Recently I am working on boosting our matlab code performance. The old c mex API works good and I noticed that matlab 2018 introduced a new c++ mex function to avoid data copy. I believe it suppose to be faster but in my code the performance is pretty bad for C++ mex function.
I tested in my local env c++ mex code need 70s for my test data about 50 rounds iteration, but c mex only took 0.089s total. In my test I know in C++ mex the iteration is not optimized but in my scenario I am unable to use sample code iterator (auto& elem : inMatrix) .
Can someone help explain? Thanks in advance
Sample code:
ret(di,:) = basedata(di,:) ./ (basedata(di-1,:) * flag(di:, );
So I converted this function for both c mex and c++ mex function:
c++ mex:
size_t numRows = inputs[0].getDimensions()[0];
size_t numColumns = inputs[0].getDimensions()[1];
TypedArray<double> ret = std::move(inputs[0]);
TypedArray<double> data = inputs[1];
TypedArray<double> tradable = inputs[2];
size_t i, j, pos;
for (i = 1; i < numRows; i++) {
for (j = 0; j < numColumns; j++) {
if (data[i - 1][j] > 1 && data[i][j] > 1)
ret[i][j] = (data[i][j] / data[i - 1][j] - 1.0) * flag[i][j];
}
}
outputs[0] = ret;
c mex:
double *ret = mxGetPr(prhs[0]);
double *data = mxGetPr(prhs[1]);
double *tradable = mxGetPr(prhs[2]);
size_t ROWS = mxGetM(prhs[0]);
size_t N_INSTRUMENTS = mxGetN(prhs[0]);
for (j = 0; j < N_INSTRUMENTS; j++) {
for (i = 1; i < ROWS; i++) {
pos = j * ROWS + i;
if (data[pos - 1] > 1 && data[pos] > 1)
ret[pos] = (data[pos] / data[pos - 1] - 1.0) * flag[pos];
}
}
  3 Kommentare
Xuechao Qin
Xuechao Qin am 19 Apr. 2022
Yes, i think the matrix[i][j] overload has some issues. If I only do iteration like below, the speed is almost identical as c mex function. But there is no guidance about how to index 2d array faster in C++ mex.
for (auto &elem: ret) {
elem = 1;
}
Bruno Luong
Bruno Luong am 19 Apr. 2022
That why I never like C++; all the inner details are hiden to user.

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange

Tags

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by