Solving a non linear ODE with unknown parameter
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
khaoula Oueslati
am 14 Apr. 2022
Kommentiert: khaoula Oueslati
am 19 Apr. 2022
Hello ! I am working on solving an ODE equation with an unknown kinetic parameter A. I have been using python and deep learning to solve the equation and also determine the value of A , however the loss function is always in the order of 10**4 and the paramter A is wrong , I tried with different hyperparamters but it´s not working. this is the ODE equation : dDP/dt=-k1*([DP]^2) and k1=k= Ae^(1/R(-E/(T+273))) , A is in the order of 10**8, I have DP(t) data.
I am stuck and I would like to know what´s the best way to solve this using matlab ? or is there any examples similar to my problem ?
Any help is highly appreciated !
0 Kommentare
Akzeptierte Antwort
Torsten
am 19 Apr. 2022
Bearbeitet: Torsten
am 19 Apr. 2022
%time points
ts=[1 2 3 4 5 6 7 8];
DP=[1000 700.32 580.42 408.20 317.38 281.18 198.15 100.12];
p0 = 1e1;
p = fminunc(@(p)fun(p,ts,DP),p0)
E = 111e3;
R = 8.314;
T = 371;
A = p*exp(E/(R*T))
plot(ts,DP)
hold on
plot(ts,1./(1/DP(1)+ A*exp(-E/(R*T))*(ts-ts(1))));
function obj = fun(p,ts,DP)
DP_model = 1./(1/DP(1)+ p*(ts-ts(1)));
obj = sum((DP-DP_model).^2)
end
6 Kommentare
Torsten
am 19 Apr. 2022
the loss value is :loss value is 0.35787 and A value is 1.08e10 and the ground_truth A value is 7.8e8
I am not sure the source of this mismatch.
I don't know either. Maybe T or E were different. The fit at least is perfect.
btw , how did you find the DP_model expression ? is it some appoximation ? or after integration we get that expression of the solution ?
If you don't trust in my pencil-and-paper solution, here is MATLAB code to solve the differential equation:
syms Dp(t) k1 t0 Dp0
eqn = diff(Dp,t) == -k1*Dp^2;
cond = Dp(t0) == Dp0;
DpSol(t) = dsolve(eqn,cond)
Weitere Antworten (3)
Torsten
am 14 Apr. 2022
Your ODE for D_p gives
D_p = 1/(1/D_p0 + k1*(t-t0))
where D_p0 = D_p(t0).
Now you can apply "lsqcurvefit" to fit the unknown parameter A.
2 Kommentare
Sam Chak
am 14 Apr. 2022
Bearbeitet: Sam Chak
am 14 Apr. 2022
This governing equations are given and you have acquired the data.
The objective is want to find A.
From the data, you can possibly estimate for . Next, can be determined from the differential equation:
Now, if R, E and T are known, then can be determined from the algebraic equation:
Please verify this.
If the data is uniformly distributed, then you can use this method to estimate .
t = -pi:(2*pi/100):pi;
x = sin(t); % assume Dp is a sine wave
y = gradient(x)/(2*pi/100); % estimate dotDp, a cosine wave is expected
plot(t, x, 'linewidth', 1.5, t, y, 'linewidth', 1.5)
grid on
xlabel('t')
ylabel('x(t) and x''(t)')
legend('x(t) = sin(t)', 'x''(t) = cos(t)', 'location', 'northwest')
David Willingham
am 14 Apr. 2022
Hi,
Have you seen this example for solving ODE's using Deep Learning in MATLAB?
Siehe auch
Kategorien
Mehr zu Quadratic Programming and Cone Programming finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!