Finding gradient of a part of a graph

24 Ansichten (letzte 30 Tage)
Yen Tien Yap
Yen Tien Yap am 9 Apr. 2022
Bearbeitet: Tala am 9 Apr. 2022
May I know how to find the gradient of the first linear part? What function should I use?

Akzeptierte Antwort

Sam Chak
Sam Chak am 9 Apr. 2022
Bearbeitet: Sam Chak am 9 Apr. 2022
Technically, if is plotted by a function f(x) with a uniform step size h, then you can use the nabla = gradient(f)/h to compute the slope of f(x).
To find the gradient of the transient response, you need to pick a point in that region, for example, , and then find the index idx that is nearest to, or exactly at this point.
You can try @Faraz Hedayati's code or this code. Both are good learning experiences for you
h = 0.01;
x = 0:h:10;
y = 1 - exp(-x/sqrt(2)).*(cos(x/sqrt(2)) + sin(x/sqrt(2)));
plot(x, y)
hold on
nabla = gradient(y)/h;
[M, idx] = max(nabla);
plot(x(idx), y(idx), 'o', 'linewidth', 1.5)
m = nabla(idx) % slope at point p
c = y(idx) - m*x(idx) % y-intercept
z = m*x + c; % line equation at point p
plot(x, z, 'linewidth', 1.5)
hold off
grid on
xlabel('x')
ylabel('y')
title('y = f(x) and the tangent line at the steepest slope')
legend('function f(x)', 'the point at f(p)', 'tangent line', 'location', 'best')
Result:
Note: If the spread of the data points are not uniform, then you probably need to use the interpolation technique, interp1().

Weitere Antworten (1)

Tala
Tala am 9 Apr. 2022
Bearbeitet: Tala am 9 Apr. 2022
A=your signal; dx=epsilon(2)-epsilon(1); % assuming the sampling frequency is constant
[M,I] = max(A);
B=diff(A(1:I))./dx;

Kategorien

Mehr zu Graph and Network Algorithms finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by