finite difference method scheme
16 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
aktham mansi
am 8 Apr. 2022
Bearbeitet: aktham mansi
am 8 Apr. 2022

discretization with uniform (r*theta) (81 * 41), Implement Jacobi,
the discretization equation is

i tried this code:
error: Array indices must be positive integers or logical values.
someone help me please
% laplace equation - 2D - Jacobi Method - Cylindrical / Polar
% Coordinates
% Dirichlet BC conditions - Constant properties at boundaries
clc
clear all
%%%%%%%%%%%%%%% Inputs
r_in=1; % Inside Radius of polar coordinates, r_in, say 1 m
r_out = 2; % Outside Radins of polar coordinates, r_out, say 2 m
j_max = 40; % no. of sections divided between r_in and r_out eg 80, 160,320
dr = (r_out - r_in)/j_max; % section length, m
%nr = j_max+1; % total no. of radial points =81 or 161 or 321
% total angle = 2*pi
i_max= 80; % no. of angle steps eg 40, 80, 160
dtheta= 2*pi/i_max; % angle step, rad
%Ur_in=1; %BC1
%Ur_out=0; %BC2
r = 1:dr:2;
theta=0:dtheta:2*pi;
[r,theta]=meshgrid(r,theta);
%%%%%initialize solution array
u=zeros(j_max+1,i_max+1);%%%%81*41 matrix
u_0=zeros(j_max+1,i_max+1);
u(1,:)=u(1,:)+1;
u(2,:)=u(2,:)+0;
beta=dr^2/dtheta^2;
n=1;
k=0;
%%% j index for radius r and i index for phi%%%%
while k==0
u_0=u;
k=1;
for i=2:80
for j=2:40
r(j)=1+(j-1)*dr;
theta(i)=dtheta/2+(i-1)*dtheta;
u(i,j)=(r(j+0.5)*u_0(i,j+1)+r(j-0.5)*u_0(i,j-1)+beta*u_0(i+1,j)+beta*u_0(i-1,j))/(r(j+0.5)+r(j-0.5)+2*beta);
if abs(u(i,j)-u_o(i,j))>(10^-5)
k=0;
end
end
end
n=n+1;
end
7 Kommentare
Torsten
am 8 Apr. 2022
Bearbeitet: Torsten
am 8 Apr. 2022
As I said: If nothing is wrong with your solution, the following should work:
r = linspace(1,2,41);
theta = linspace(0,2*pi,81);
[r,theta] = meshgrid(r,theta);
uana = -log(r)/log(2) + 1;
[x,y]=pol2cart(theta,r);
figure(1)
surface(x,y,uana);
figure(2)
surface(x,y,u)
colorbar;
Akzeptierte Antwort
VBBV
am 8 Apr. 2022
clc
clear all
%%%%%%%%%%%%%%% Inputs
r_in=1; % Inside Radius of polar coordinates, r_in, say 1 m
r_out = 2; % Outside Radins of polar coordinates, r_out, say 2 m
j_max = 40; % no. of sections divided between r_in and r_out eg 80, 160,320
dr = (r_out - r_in)/j_max; % section length, m
%nr = j_max+1; % total no. of radial points =81 or 161 or 321
% total angle = 2*pi
i_max= 80; % no. of angle steps eg 40, 80, 160
dtheta= 2*pi/i_max; % angle step, rad
%Ur_in=1; %BC1
%Ur_out=0; %BC2
r = 1:dr:2;
theta=0:dtheta:2*pi;
[r,theta]=meshgrid(r,theta);
%%%%%initialize solution array
u=zeros(i_max+1,j_max+1);%%%%81*41 matrix
u_0=zeros(i_max+1,j_max+1);
u(1,:)=u(1,:)+1;
u(2,:)=u(2,:)+0;
beta=dr^2/dtheta^2;
n=1;
k=0;
%%% j index for radius r and i index for phi%%%%
while k==0
u_0=u;
k=1;
for i=2:80
for j=2:40
r(j)=1+(j-1)*dr;
theta(i)=dtheta/2+(i-1)*dtheta;
u(i,j)=(((r(j)+r(j+1))/2)*u_0(i,j+1)+((r(j)+r(j-1))/2)*u_0(i,j-1)+beta*u_0(i+1,j)+beta*u_0(i-1,j))/(((r(j)+r(j+1))/2)+((r(j)+r(j-1))/2)+2*beta);
if abs(u(i,j)-u_0(i,j))>(10^-5)
k=0;
end
end
end
n=n+1;
end
u
4 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu General PDEs finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


