finite difference method scheme

16 Ansichten (letzte 30 Tage)
aktham mansi
aktham mansi am 8 Apr. 2022
Bearbeitet: aktham mansi am 8 Apr. 2022
discretization with uniform (r*theta) (81 * 41), Implement Jacobi,
the discretization equation is
i tried this code:
error: Array indices must be positive integers or logical values.
someone help me please
% laplace equation - 2D - Jacobi Method - Cylindrical / Polar
% Coordinates
% Dirichlet BC conditions - Constant properties at boundaries
clc
clear all
%%%%%%%%%%%%%%% Inputs
r_in=1; % Inside Radius of polar coordinates, r_in, say 1 m
r_out = 2; % Outside Radins of polar coordinates, r_out, say 2 m
j_max = 40; % no. of sections divided between r_in and r_out eg 80, 160,320
dr = (r_out - r_in)/j_max; % section length, m
%nr = j_max+1; % total no. of radial points =81 or 161 or 321
% total angle = 2*pi
i_max= 80; % no. of angle steps eg 40, 80, 160
dtheta= 2*pi/i_max; % angle step, rad
%Ur_in=1; %BC1
%Ur_out=0; %BC2
r = 1:dr:2;
theta=0:dtheta:2*pi;
[r,theta]=meshgrid(r,theta);
%%%%%initialize solution array
u=zeros(j_max+1,i_max+1);%%%%81*41 matrix
u_0=zeros(j_max+1,i_max+1);
u(1,:)=u(1,:)+1;
u(2,:)=u(2,:)+0;
beta=dr^2/dtheta^2;
n=1;
k=0;
%%% j index for radius r and i index for phi%%%%
while k==0
u_0=u;
k=1;
for i=2:80
for j=2:40
r(j)=1+(j-1)*dr;
theta(i)=dtheta/2+(i-1)*dtheta;
u(i,j)=(r(j+0.5)*u_0(i,j+1)+r(j-0.5)*u_0(i,j-1)+beta*u_0(i+1,j)+beta*u_0(i-1,j))/(r(j+0.5)+r(j-0.5)+2*beta);
if abs(u(i,j)-u_o(i,j))>(10^-5)
k=0;
end
end
end
n=n+1;
end
  7 Kommentare
aktham mansi
aktham mansi am 8 Apr. 2022
i want to draw the finite difference solution and the analytical solution. ( can you add section to draw the finite difference solution?)
clc
clear all
%%%%%%%%%%%%%%% Inputs
r_in=1; % Inside Radius of polar coordinates, r_in, say 1 m
r_out = 2; % Outside Radins of polar coordinates, r_out, say 2 m
j_max = 40; % no. of sections divided between r_in and r_out eg 80, 160,320
dr = (r_out - r_in)/j_max; % section length, m
%nr = j_max+1; % total no. of radial points =81 or 161 or 321
% total angle = 2*pi
i_max= 80; % no. of angle steps eg 40, 80, 160
dtheta= 2*pi/i_max; % angle step, rad
%Ur_in=1; %BC1
%Ur_out=0; %BC2
r = 1:dr:2;
theta=0:dtheta:2*pi;
[r,theta]=meshgrid(r,theta);
%%%%%initialize solution array
u=zeros(i_max+1,j_max+1);%%%%81*41 matrix
u_0=zeros(i_max+1,j_max+1);
u(1,:)=u(1,:)+1;
u(2,:)=u(2,:)+0;
beta=dr^2/dtheta^2;
n=1;
k=0;
%%% j index for radius r and i index for phi%%%%
while k==0
u_0=u;
k=1;
for i=2:80
for j=2:40
r(j)=1+(j-1)*dr;
theta(i)=dtheta/2+(i-1)*dtheta;
u(i,j)=(((r(j)+r(j+1))/2)*u_0(i,j+1)+((r(j)+r(j-1))/2)*u_0(i,j-1)+beta*u_0(i+1,j)+beta*u_0(i-1,j))/(((r(j)+r(j+1))/2)+((r(j)+r(j-1))/2)+2*beta);
if abs(u(i,j)-u_0(i,j))>(10^-5)
k=0;
end
end
end
n=n+1;
end
n
r = linspace(1,2,41);
theta = linspace(0,2*pi,81);
theta = theta(1:end);
[r,theta] = meshgrid(r,theta);
uana = -log(r)/log(2) + 1;
[x,y]=pol2cart(theta,r);
surface(x,y,uana);
colorbar;
Torsten
Torsten am 8 Apr. 2022
Bearbeitet: Torsten am 8 Apr. 2022
As I said: If nothing is wrong with your solution, the following should work:
r = linspace(1,2,41);
theta = linspace(0,2*pi,81);
[r,theta] = meshgrid(r,theta);
uana = -log(r)/log(2) + 1;
[x,y]=pol2cart(theta,r);
figure(1)
surface(x,y,uana);
figure(2)
surface(x,y,u)
colorbar;

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

VBBV
VBBV am 8 Apr. 2022
clc
clear all
%%%%%%%%%%%%%%% Inputs
r_in=1; % Inside Radius of polar coordinates, r_in, say 1 m
r_out = 2; % Outside Radins of polar coordinates, r_out, say 2 m
j_max = 40; % no. of sections divided between r_in and r_out eg 80, 160,320
dr = (r_out - r_in)/j_max; % section length, m
%nr = j_max+1; % total no. of radial points =81 or 161 or 321
% total angle = 2*pi
i_max= 80; % no. of angle steps eg 40, 80, 160
dtheta= 2*pi/i_max; % angle step, rad
%Ur_in=1; %BC1
%Ur_out=0; %BC2
r = 1:dr:2;
theta=0:dtheta:2*pi;
[r,theta]=meshgrid(r,theta);
%%%%%initialize solution array
u=zeros(i_max+1,j_max+1);%%%%81*41 matrix
u_0=zeros(i_max+1,j_max+1);
u(1,:)=u(1,:)+1;
u(2,:)=u(2,:)+0;
beta=dr^2/dtheta^2;
n=1;
k=0;
%%% j index for radius r and i index for phi%%%%
while k==0
u_0=u;
k=1;
for i=2:80
for j=2:40
r(j)=1+(j-1)*dr;
theta(i)=dtheta/2+(i-1)*dtheta;
u(i,j)=(((r(j)+r(j+1))/2)*u_0(i,j+1)+((r(j)+r(j-1))/2)*u_0(i,j-1)+beta*u_0(i+1,j)+beta*u_0(i-1,j))/(((r(j)+r(j+1))/2)+((r(j)+r(j-1))/2)+2*beta);
if abs(u(i,j)-u_0(i,j))>(10^-5)
k=0;
end
end
end
n=n+1;
end
u
u = 81×41
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0.2246 0.3798 0.4896 0.5690 0.6277 0.6717 0.7054 0.7314 0.7518 0.7678 0.7804 0.7903 0.7981 0.8039 0.8082 0.8112 0.8129 0.8134 0.8129 0.8113 0.8087 0.8049 0.8000 0.7939 0.7863 0.7772 0.7663 0.7532 0.7377 0 0.1039 0.1974 0.2783 0.3468 0.4043 0.4521 0.4918 0.5246 0.5517 0.5739 0.5921 0.6068 0.6185 0.6276 0.6343 0.6389 0.6416 0.6424 0.6415 0.6390 0.6347 0.6287 0.6210 0.6115 0.5999 0.5863 0.5704 0.5520 0.5307 0 0.0637 0.1240 0.1796 0.2299 0.2747 0.3141 0.3486 0.3783 0.4038 0.4255 0.4437 0.4587 0.4709 0.4805 0.4877 0.4926 0.4955 0.4964 0.4953 0.4925 0.4877 0.4812 0.4729 0.4627 0.4506 0.4365 0.4205 0.4023 0.3820 0 0.0434 0.0850 0.1242 0.1606 0.1941 0.2244 0.2516 0.2757 0.2968 0.3152 0.3309 0.3441 0.3549 0.3635 0.3700 0.3745 0.3770 0.3778 0.3768 0.3740 0.3696 0.3636 0.3560 0.3467 0.3359 0.3235 0.3096 0.2941 0.2770 0 0.0309 0.0606 0.0889 0.1155 0.1403 0.1631 0.1838 0.2025 0.2191 0.2337 0.2463 0.2570 0.2658 0.2729 0.2783 0.2820 0.2841 0.2847 0.2837 0.2814 0.2777 0.2726 0.2662 0.2585 0.2496 0.2394 0.2282 0.2158 0.2023 0 0.0224 0.0441 0.0648 0.0843 0.1027 0.1196 0.1352 0.1494 0.1621 0.1733 0.1831 0.1914 0.1983 0.2039 0.2081 0.2110 0.2126 0.2130 0.2123 0.2104 0.2073 0.2033 0.1982 0.1921 0.1850 0.1771 0.1684 0.1588 0.1485 0 0.0165 0.0323 0.0476 0.0620 0.0756 0.0882 0.0998 0.1105 0.1200 0.1285 0.1359 0.1422 0.1475 0.1518 0.1550 0.1572 0.1584 0.1587 0.1581 0.1566 0.1542 0.1510 0.1471 0.1424 0.1370 0.1309 0.1243 0.1170 0.1092 0 0.0121 0.0238 0.0351 0.0457 0.0558 0.0651 0.0738 0.0817 0.0888 0.0952 0.1007 0.1055 0.1094 0.1126 0.1150 0.1167 0.1176 0.1178 0.1173 0.1161 0.1143 0.1119 0.1089 0.1054 0.1013 0.0967 0.0917 0.0863 0.0804 0 0.0089 0.0176 0.0259 0.0337 0.0412 0.0481 0.0545 0.0604 0.0657 0.0704 0.0745 0.0780 0.0810 0.0834 0.0851 0.0864 0.0870 0.0872 0.0868 0.0859 0.0845 0.0827 0.0804 0.0778 0.0747 0.0713 0.0676 0.0635 0.0592
  4 Kommentare
aktham mansi
aktham mansi am 8 Apr. 2022
it will look like that
not rectangular, but polar
aktham mansi
aktham mansi am 8 Apr. 2022
@Kaid Noureddine , thank you, could you please draw the domain for me?
the domain should look like this
.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Produkte


Version

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by