Trigonometric functions using dsolve
20 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Urmish Hemant Haribhakti Parikh
am 4 Apr. 2022
Kommentiert: Walter Roberson
am 5 Apr. 2022
This code works well. How can I use sin(theta2) instead of theta2. Its giving me error.
syms theta1(t) theta2(t) theta3(t)
ode1= diff(theta1)== 1+theta2-theta1;
ode2= diff(theta2)==1+ theta3-theta2;
ode3= diff(theta3)== theta2-theta3;
odes=[ode1;ode2; ode3];
S=dsolve(odes);
theta1Sol(t) = S.theta1;
theta2Sol(t)=S.theta2;
theta3Sol(t)=S.theta3;
cond1 = theta1(0) == 0.1;
cond2 = theta2(0) == 0.3;
cond3 = theta3(0) == 0.2;
conds = [cond1; cond2; cond3];
[theta1Sol(t),theta2Sol(t), theta3Sol] = dsolve(odes,conds)
fplot(theta1Sol)
hold on
fplot(theta2Sol)
grid on
fplot(theta3Sol)
grid on
legend('theta1Sol','theta2Sol','theta2Sol','Location','best')
7 Kommentare
Antworten (2)
Walter Roberson
am 5 Apr. 2022
syms theta_1(t) sin_theta_2(t) theta_3(t)
ode1 = diff(theta_1) == 1 + sin_theta_2 - theta_1;
ode2 = diff(sin_theta_2) == 1 + theta_3 - sin_theta_2;
ode3 = diff(theta_3) == sin_theta_2 - theta_3;
odes = [ode1; ode2; ode3];
Snc = dsolve(odes)
theta_1_Sol_nocond(t) = simplify(Snc.theta_1)
theta_2_Sol_nocond(t) = simplify(asin(Snc.sin_theta_2))
theta_3_Sol_nocond(t) = simplify(Snc.theta_3)
cond1 = theta_1(0) == 0.1;
cond2 = sin_theta_2(0) == 0.3;
cond3 = theta_3(0) == 0.2;
conds = [cond1; cond2; cond3];
Sc = dsolve(odes, conds);
theta_1_Sol_cond(t) = simplify(Sc.theta_1)
theta_2_Sol_cond(t) = simplify(asin(Sc.sin_theta_2))
theta_3_Sol_cond(t) = simplify(Sc.theta_3)
fplot(theta_1_Sol_cond)
hold on
fplot(theta_2_Sol_cond)
grid on
fplot(theta_3_Sol_cond)
grid on
legend('theta1Sol','theta2Sol','theta2Sol','Location','best')
figure
lowerbound = solve(Sc.sin_theta_2 == -1)
upperbound = solve(Sc.sin_theta_2 == 1)
bounds = double([lowerbound, upperbound])
fplot(theta_1_Sol_cond, bounds)
hold on
fplot(theta_2_Sol_cond, bounds)
grid on
fplot(theta_3_Sol_cond, bounds)
grid on
legend('theta1Sol','theta2Sol','theta2Sol','Location','best')
2 Kommentare
Walter Roberson
am 5 Apr. 2022
At the time I was composing this, there had not been a reply indicating where the sin() was intended to go.
Torsten
am 5 Apr. 2022
fun = @(t,theta) [1+sin(theta(2))-theta(1);1+theta(3)-theta(2);theta(2)-theta(3)];
theta0 = [0.1, 0.3, 0.2];
tspan = [0,2*pi]
[t,theta] = ode45(fun,tspan,theta0)
plot(t,theta)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




