solving PDE with boundary conditions involving derivative
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
YeEn Kim
am 25 Mär. 2022
Kommentiert: YeEn Kim
am 26 Mär. 2022
Hi!
I'm trying to solve a PDE problem with boundary conditions: C(0,t)=Cf & dC(L,t)dz=0
My final goal is to find the C(z,t) and L.
Here is my full code for now:
Da=findDa(d_p,u,epsilon,Rho,eta);%function
constant=findConstant(epsilon, q_max, k_eq);
% z=findz(u, Da,Cf);
z = linspace(0,0.1,50);
t = linspace(0,1,50);
m = 0;
eqn = @(z,t,C,dCdz) setPDE(z,t,C,dCdz,Da,constant,u);
sol = pdepe(m,eqn,@findIC,@setBC,z,t);
C = sol(:,:,1);
function constantVal=findConstant(epsilon, q_max, k_eq)
constantVal=(1+(1-epsilon)/epsilon*q_max*k_eq);
end
function Daval=findDa(d_p,u,epsilon,Rho,eta)
Re=u*d_p*Rho/eta;
Daval=d_p*u*epsilon/(0.339+0.033*Re^0.48);
end
function [g,f,s]=setPDE(z,t,C,dCdz,Da,constant,u)
g=1;
f=Da/constant*dCdz;
s=-u/constant*dCdz;
end
function C0=findIC(z)
C0=0;
end
function [pl,ql,pr,qr]=setBC(zl,Cl,zr,Cr,t)
...
end
0 Kommentare
Akzeptierte Antwort
Torsten
am 26 Mär. 2022
Cf = ...;
bcfcn = @(zl,Cl,zr,Cr,t)setBC(zl,Cl,zr,Cr,t,Cf);
sol = pdepe(m,eqn,@findIC,bcfcn,z,t);
function [pl,ql,pr,qr]=setBC(zl,Cl,zr,Cr,t,Cf)
pl = Cl - Cf;
ql = 0.0;
pr = 0.0;
qr = 1.0;
end
3 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu PDE Solvers finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!