problem with the rank of controllability of a system

1 Ansicht (letzte 30 Tage)
Kamran
Kamran am 25 Mär. 2022
Bearbeitet: Sachin Lodhi am 19 Dez. 2023
I have this system given below
A=[-3.87695312500000e-06,-0.000377259521484375,-1.54541015625000e-06,-2.47435565751281e-05,0;
-0.000383031005859375,-0.0438680297851563,-0.000171501464843750,-0.00287715774129662,0;
-1.68273925781250e-06,-0.000184232788085938,-3.42102050781250e-06,-1.20840625134364e-05,0;
-0.0288955468750000,-3.30957816406250,-0.0129358593750000,-0.452124041742296,0.00180860517844498;
0,0,0,119.959269051020,-1.23669349537147]
B=[-0.000202364643587302;-0.0235307725101629;-9.88292445427022e-05;-1.42966622638009;0];
C=eye(5);
D=zeros(5,1);
the rank of the controlablity matrix gives me the following matrix
co=ctrb(A,B);
>> co=[-0.000202364643587302,4.42531724232830e-05,-1.98625050253011e-05,1.70702903536278e-05,-2.16416261767110e-05;-0.0235307725101629,0.00514571834133656,-0.00230959374267344,0.00198491754360988,-0.00251646821219010;-9.88292445427022e-05,2.16119945020915e-05,-9.70028879196148e-06,8.33665147162803e-06,-1.05691645905590e-05;-1.42966622638009,0.724270529374834,-0.654670725177827,0.844370048676126,-1.19908774023253;0,-171.501715503486,298.978019307210,-448.277993397705,655.672492400879]
Rank (co) returns 4 where as it seems it should be 5?
  1 Kommentar
Kamran
Kamran am 25 Mär. 2022
For the given system, I can develop an lqr with following paratmers
R=diag([1e1,1e3,1e1,1e2,10]);
Q=1e2;
K=lqr(A,B,R,Q);
So I dont understand the rank of controlablity martix be 4 and not 5.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Sachin Lodhi
Sachin Lodhi am 19 Dez. 2023
Bearbeitet: Sachin Lodhi am 19 Dez. 2023
Hi Kamran,
The controllability matrix 'co' has a rank of 4 instead of 5 because the first row is just the third row multiplied by 2. It means that these two rows are linearly dependent.
In terms of rank, which measures the dimension of the row or column space (the maximum number of linearly independent rows or columns), having two linearly dependent rows reduces the rank of the matrix by at least one.
So, in matrix ‘co’ of [5 x 5] dimension, if two rows are the same, the number of linearly independent rows would be '5-1 = 4', and thus the rank of the matrix would be 4.
I hope this helps.
Best Regards,
Sachin

Kategorien

Mehr zu Matrix Computations finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by