how it is possible to have overfitting before the network learn properly?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Fereshteh....
am 21 Dez. 2014
Bearbeitet: Greg Heath
am 20 Feb. 2015
my question is when my network has a performance about 90 - 98% i mean my learning error is about 98%,(I suppose such performance means my net didn't learn anything yet), how it is possible that my net stops training due to early stopping point?
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 21 Dez. 2014
Bearbeitet: Greg Heath
am 20 Feb. 2015
Poorly worded question
Are we supposed to guess
1. That you are referring to a classifier ?
2. Which MATLAB function you are using ... patternnet ?
3. The number of classes c ?
4. The dimensionality of the inputs I ?
5. The number of hidden nodes H ?
6. The trn/val/tst ratio 0.7/0.15/0.15 ?
Overfitting only means that you have more unknown weights than training equations
Nw > Ntrneq
where
Ntrneq = Ntrn*c
Nw = (I+1)*H+(H+1)*c
Validation stopping has nothing to do with training data performance. It has to do with
OVERTRAINING AN OVERFIT NET
It means that the training has reached the point where validation set performance (mse or cross-entropy) has undergone a local minimum indicating that if you don't stop, you will have over-trained an over-fit net to the point where further training will probably make the net perform worse on val, tst and unseen non-training data.
Remember:
The goal of design is to use training data to obtain a net that works well on all nontraining data:
validation + test + unseen
Hope this helps.
Thank you for formerly accepting my answer
Greg
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!