Matlab simulation for planet motion
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Niklas Kurz
am 16 Mär. 2022
Kommentiert: Niklas Kurz
am 17 Mär. 2022
There were some attemps simulating planetary motion already, but I think mine is straightforward by solving and updating position via with Euler Cromers method:
t = 0;
while t < 10
pos1 = [1 2 3];
pos2 = [4 5 6];
m1 = 1;
m2 = 2;
G = 1;
r1 = pos1-pos2;
r2 = pos2-pos1;
F1 = G*m1*m2/norm(r1).^2.*r1/norm(r1);
F2 = G*m1*m2/norm(r2).^2.*r2/norm(r2);
dt = 0.1;
p1 = [0 100 0];
p2 = [0 100 0];
p1 = p1+F1.*dt;
p2 = p2+F2.*dt;
pos1 = pos1+p1/m1;
pos2 = pos2+p2/m2;
t = t+dt;
hold all;
plot3(pos1(1),pos1(2),pos1(3),'rx')
plot3(pos2(1),pos2(2),pos2(3),'bx')
end
However I don't really receive a plot of multiple data points, just 2 crosses remaining stationary. Also I get a 2-D plot even though I reverted to plot3
1 Kommentar
KSSV
am 16 Mär. 2022
You can change it to 3D using view.
plot3(pos1(1),pos1(2),pos1(3),'rx')
plot3(pos2(1),pos2(2),pos2(3),'bx')
view(3)
Akzeptierte Antwort
James Tursa
am 16 Mär. 2022
The initial condition for position and velocity need to be outside the loop, prior to loop entry.
Weitere Antworten (1)
KSSV
am 16 Mär. 2022
t = 0;
m1 = 1;
m2 = 2;
G = 1;
pos01 = [1 2 3];
pos02 = [4 5 6];
pos1 = zeros([],3) ;
pos2 = zeros([],3) ;
iter = 0 ;
while t < 10
iter = iter+1 ;
r1 = pos01-pos02;
r2 = pos02-pos01;
F1 = G*m1*m2/norm(r1).^2.*r1/norm(r1);
F2 = G*m1*m2/norm(r2).^2.*r2/norm(r2);
dt = 0.1;
p1 = [0 100 0];
p2 = [0 100 0];
p1 = p1+F1.*dt;
p2 = p2+F2.*dt;
pos1(iter,:) = pos01+p1/m1;
pos2(iter,:) = pos02+p2/m2;
pos01 = pos1(iter,:) ;
pos02 = pos2(iter,:) ;
t = t+dt;
end
figure
hold on
plot3(pos1(:,1),pos1(:,2),pos1(:,3),'rx')
plot3(pos2(:,1),pos2(:,2),pos2(:,3),'bx')
view(3)
1 Kommentar
Siehe auch
Kategorien
Mehr zu Earth and Planetary Science finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!