Is this how I find the area under my graph?

4 Ansichten (letzte 30 Tage)
Rachel Ong
Rachel Ong am 10 Mär. 2022
Kommentiert: Rachel Ong am 11 Mär. 2022
I have this code which takes too long to run so I would save you the trouble and just attach a snippet of how I plotted the graph and called the trapz for finding the area. However, I did this but my answer seems quite far off from my caluclations so I am wondering if this was the right method to find the area under the graph. I'd like to know if I did something wrong or this answer is correct.
So this is the graph I generated and I'll attach the code below.
%% Maximum ROC vs V by taking the maximum ROC at each altitude
% ------ Functions to solve for FSOLVE (steady climbing flight) ------ %
% func1 = v' = 1/m *(T-D-mgsin(gamma)) = 0
% func2 = gamma' = 1/mu * (L-mgcos(gamma)) = 0
% func3 = Cm = 0
% ------ FSOLVE variables ------ %
% x(1) = velocity
% x(2) = deltae
% x(3) = gamma
% ------ Altitude range from flight envelope ------ %
hlist_2_5 = linspace(0,9000,300);
hlist_3 = linspace(0,17000,300);
% ------ Array for storing ------ %
% 1: V 2:deltae 3:gamma 4:aoa 5:roc 6. altitude 7. thrust 8. 1/ROC
final_list_2_5 = zeros(length(hlist_2_5),8);
final_list_3 = zeros(length(hlist_3),8);
%% PS = 2.5
%% --REMOVED-- the calculations
for j = 1:length(hlist_2_5)
[max_roc, index] = max(store_v_de_gam_aoa_roc(:,5));
final_list_2_5(j,5) = max_roc; % ROC
final_list_2_5(j,1) = store_v_de_gam_aoa_roc(index,1); % V
final_list_2_5(j,2) = store_v_de_gam_aoa_roc(index,2); % deltae
final_list_2_5(j,3) = store_v_de_gam_aoa_roc(index,3); % gamma
final_list_2_5(j,4) = store_v_de_gam_aoa_roc(index,4) % aoa
final_list_2_5(j,6) = hlist_2_5(j) % h
final_list_2_5(j,7) = store_v_de_gam_aoa_roc(index,6) % thrust
final_list_2_5(j,8) = 1/max_roc; % 1/ROC
end
%% PS = 3
%% --REMOVED-- the calculations
for j = 1:length(hlist_3)
[max_roc, index] = max(store_v_de_gam_aoa_roc(:,5));
final_list_3(j,5) = max_roc; % ROC
final_list_3(j,1) = store_v_de_gam_aoa_roc(index,1); % V
final_list_3(j,2) = store_v_de_gam_aoa_roc(index,2); % deltae
final_list_3(j,3) = store_v_de_gam_aoa_roc(index,3); % gamma
final_list_3(j,4) = store_v_de_gam_aoa_roc(index,4) % aoa
final_list_3(j,6) = hlist_3(j) % h
final_list_3(j,7) = store_v_de_gam_aoa_roc(index,6) % thrust
final_list_3(j,8) = 1/max_roc; % 1/ROC
end
% ------ Finding time to climb to each altitude ------ %
time_2_5_climb = trapz(final_list_2_5(:,8),final_list_2_5(:,6))
% 92475.4221575 s = 25.7 hours <-- this is the result I got
time_3_climb = trapz(final_list_3(:,8),final_list_3(:,6))
% 164693.805554 s = 45.7 hours <-- this is the result I got
% ------ Plotting graph (X vs Y)------ %
figure % 1/ROC vs Altitude
plot(final_list_2_5(:,6),final_list_2_5(:,8))
hold on
plot(final_list_3(:,6),final_list_3(:,8))
xlabel('Altitude [m]')
ylabel('1/Rate of climb [s/m]')
title('1/Rate of climb vs Altitude')
legend('PS = 2.5','PS = 3')
grid on
  1 Kommentar
Rachel Ong
Rachel Ong am 10 Mär. 2022
Bearbeitet: Rachel Ong am 10 Mär. 2022
Incase the snippet of script didnt make sense, here is the full code. However, it takes almost 600s to run.
%% Maximum ROC vs V by taking the maximum ROC at each altitude
clc
clear all
% ------ Constants ------ %
m = 1248.5;
g = 9.81;
W = m*g;
S = 17.1;
% ------ Functions to solve for FSOLVE (steady climbing flight) ------ %
% func1 = v' = 1/m *(T-D-mgsin(gamma)) = 0
% func2 = gamma' = 1/mu * (L-mgcos(gamma)) = 0
% func3 = Cm = 0
% ------ FSOLVE variables ------ %
% x(1) = velocity
% x(2) = deltae
% x(3) = gamma
% ------ Altitude range from flight envelope ------ %
hlist_2_5 = linspace(0,9000,300);
hlist_3 = linspace(0,17000,300);
% ------ Array for storing ------ %
% 1: V 2:deltae 3:gamma 4:aoa 5:roc 6. altitude 7. thrust 8. 1/ROC
final_list_2_5 = zeros(length(hlist_2_5),8);
final_list_3 = zeros(length(hlist_3),8);
% ------ Initial guess ------ %
x = [40 0 0];
%% PS = 2.5
for j = 1:length(hlist_2_5)
PS = 2.5
h = hlist_2_5(j)
[rho, speedsound] = atmos(h)
[aoa_start,aoa_end] = aoa_guess(PS)
aoalist = linspace(aoa_start,aoa_end,150);
store_v_de_gam_aoa_roc = zeros(length(aoalist),6);
% 1: V 2:deltae 3:gamma 4:aoa 5:roc 6. thrust
for i = 1:length(aoalist)
qbar = @(x) 0.5*rho*x(1)^2*S;
CL = @(x) 6.44*aoalist(i) + 0.355*x(2);
L = @(x) CL(x)*qbar(x);
CD = @(x) 0.03 + 0.05*(CL(x))^2;
D = @(x) CD(x)*qbar(x);
Cm = @(x) 0.05 - 0.683*aoalist(i) - 0.923*x(2);
T = @(x) PS *( (7+x(1)/speedsound)*200/3 + h/1000*(2*x(1)/speedsound -11));
f1 = @(x) (1/m)*(T(x)-D(x)-m*g*sin(x(3)));
f2 = @(x) (1/(m*x(1)))*(L(x)-m*g*cos(x(3)));
f3 = @(x) Cm(x);
func = @(x) [f1(x);f2(x);f3(x)];
x = fsolve(@(x) func(x), x);
store_v_de_gam_aoa_roc(i,1) = x(1); % V
store_v_de_gam_aoa_roc(i,2) = x(2); % delta e
store_v_de_gam_aoa_roc(i,3) = x(3); % gamma
store_v_de_gam_aoa_roc(i,4) = aoalist(i); % aoa
thrust = PS * ( 200/3*(7 + x(1)/speedsound) + h/1000*(2*x(1)/speedsound - 11) );
liftcoeff = 6.44*aoalist(i) + 0.355*x(2);
drag = 0.5*rho*x(1)^2*S*(0.03 + 0.05*liftcoeff^2);
ROC = (thrust-drag)*x(1)/W;
store_v_de_gam_aoa_roc(i,5)= ROC; % ROC
store_v_de_gam_aoa_roc(i,6)= thrust; % ROC
end
[max_roc, index] = max(store_v_de_gam_aoa_roc(:,5));
final_list_2_5(j,5) = max_roc; % ROC
final_list_2_5(j,1) = store_v_de_gam_aoa_roc(index,1); % V
final_list_2_5(j,2) = store_v_de_gam_aoa_roc(index,2); % deltae
final_list_2_5(j,3) = store_v_de_gam_aoa_roc(index,3); % gamma
final_list_2_5(j,4) = store_v_de_gam_aoa_roc(index,4) % aoa
final_list_2_5(j,6) = hlist_2_5(j) % h
final_list_2_5(j,7) = store_v_de_gam_aoa_roc(index,6) % thrust
final_list_2_5(j,8) = 1/max_roc; % 1/ROC
end
% ------ Initial guess ------ %
x = [40 0 0];
%% PS = 3
for j = 1:length(hlist_3)
PS = 3;
h = hlist_3(j);
[rho, speedsound] = atmos(h);
[aoa_start,aoa_end] = aoa_guess(PS);
aoalist = linspace(aoa_start,aoa_end,150);
store_v_de_gam_aoa_roc = zeros(length(aoalist),5);
% 1: V 2:deltae 3:gamma 4:aoa 5:roc 6. thrust
for i = 1:length(aoalist)
qbar = @(x) 0.5*rho*x(1)^2*S;
CL = @(x) 6.44*aoalist(i) + 0.355*x(2);
L = @(x) CL(x)*qbar(x);
CD = @(x) 0.03 + 0.05*(CL(x))^2;
D = @(x) CD(x)*qbar(x);
Cm = @(x) 0.05 - 0.683*aoalist(i) - 0.923*x(2);
T = @(x) PS *( (7+x(1)/speedsound)*200/3 + h/1000*(2*x(1)/speedsound -11));
f1 = @(x) (1/m)*(T(x)-D(x)-m*g*sin(x(3)));
f2 = @(x) (1/(m*x(1)))*(L(x)-m*g*cos(x(3)));
f3 = @(x) Cm(x);
func = @(x) [f1(x);f2(x);f3(x)];
x = fsolve(@(x) func(x), x);
store_v_de_gam_aoa_roc(i,1) = x(1); % V
store_v_de_gam_aoa_roc(i,2) = x(2); % delta e
store_v_de_gam_aoa_roc(i,3) = x(3); % gamma
store_v_de_gam_aoa_roc(i,4) = aoalist(i); % aoa
thrust = PS * ( 200/3*(7 + x(1)/speedsound) + h/1000*(2*x(1)/speedsound - 11) );
liftcoeff = 6.44*aoalist(i) + 0.355*x(2);
drag = 0.5*rho*x(1)^2*S*(0.03 + 0.05*liftcoeff^2);
ROC = (thrust-drag)*x(1)/W;
store_v_de_gam_aoa_roc(i,5)= ROC; % ROC
store_v_de_gam_aoa_roc(i,6)= thrust; % thrust
end
[max_roc, index] = max(store_v_de_gam_aoa_roc(:,5));
final_list_3(j,5) = max_roc; % ROC
final_list_3(j,1) = store_v_de_gam_aoa_roc(index,1); % V
final_list_3(j,2) = store_v_de_gam_aoa_roc(index,2); % deltae
final_list_3(j,3) = store_v_de_gam_aoa_roc(index,3); % gamma
final_list_3(j,4) = store_v_de_gam_aoa_roc(index,4) % aoa
final_list_3(j,6) = hlist_3(j) % h
final_list_3(j,7) = store_v_de_gam_aoa_roc(index,6) % thrust
final_list_3(j,8) = 1/max_roc; % 1/ROC
end
% ------ Finding time to climb to each altitude ------ %
time_2_5_climb = trapz(final_list_2_5(:,8),final_list_2_5(:,6))
% 92475.4221575 s = 25.7 hours
time_3_climb = trapz(final_list_3(:,8),final_list_3(:,6))
% 164693.805554 s = 45.7 hours
% ------ Plotting graph (X vs Y)------ %
figure % 1/ROC vs Altitude
plot(final_list_2_5(:,6),final_list_2_5(:,8))
hold on
plot(final_list_3(:,6),final_list_3(:,8))
xlabel('Altitude [m]')
ylabel('1/Rate of climb [s/m]')
title('1/Rate of climb vs Altitude')
legend('PS = 2.5','PS = 3')
grid on
figure % Velocity vs Altitude
plot(final_list_2_5(:,6),final_list_2_5(:,1))
hold on
plot(final_list_3(:,6),final_list_3(:,1))
xlabel('Altitude [m]')
ylabel('Velocity [m/s]')
title('Velocity vs Altitude')
legend('PS = 2.5','PS = 3')
grid on
%% ------ Atmos function ------ %%
% Calculating T, p ,rho and speedsound for every altitude in the ISA atmosphere
function [rho, speedsound] = atmos(h)
h1 = 11000; % Height of tropopause
h2 = 20000; % End height of table
g = 9.81;
R = 287;
c = 6.51e-3; % temperature lapse dt/dh = - c = -6.51 degcelcius/km
T0 = 15+273.15; % Temperature sea level
p0 = 101325; % pressure sealevel
rho0 = 101325/R/T0; % density sealevel = pressure / R*T, R=287, T = 15 degcelcius
T1 = T0 - c*h1; % Temperature at 11km
p1 = p0 * (T1/T0)^5.2506; % Pressure at 11km
rho1 = rho0 * (T1/T0)^4.2506; % Density at 11km
T2 = T1; % Temperature at 20km
p2 = p1 * exp(-g/(R*T2)*(h2-h1)); % Pressure at 20km
rho2 = rho1 * exp(-g/(R*T2)*(h2-h1)); % Density at 20km
if h <= h1
% disp('Troposphere');
T = T0 - c*h;
p = p0 * (T/T0)^5.2506;
rho = rho0 * (T/T0)^4.2506;
speedsound = (1.4*R*T)^0.5;
elseif h <= h2
% disp('Tropopause');
T = T1;
p = p1 * exp(-g/(R*T)*(h-h1));
rho = rho1 * exp(-g/(R*T)*(h-h1));
speedsound = (1.4*R*T)^0.5;
end
return
end
%% ------ AOA guess function ------ %%
% To guess the range of AOA at each altitude
function [aoa_start,aoa_end] = aoa_guess(PS)
h = 0;
W = 1248.5*9.81; % Weight of UAV
S = 17.1; % Wing area
% CL = (6.44*aoa + 0.355*eledefl);
% CD = (0.03 + 0.05*(6.44*aoa + 0.355*eledefl)^2);
% Cm = (0.05 - 0.683*aoa - 0.923*eledefl);
% thrust = (PS * ( (7 + V/speedsound )*200/3 + h*(2*(V/speedsound) - 11) ));
%%
% V = x(1);
% aoa = x(2);
% eledefl = x(3);
[rho, speedsound] = atmos(h);
qbar = @(x) 0.5*rho*x(1)^2*S;
CL = @(x) (6.44*x(2) + 0.355*x(3));
CD = @(x) (0.03 + 0.05*(CL(x))^2);
Cm = @(x) 0.05 - 0.683*x(2) - 0.923*x(3);
thrust = @(x) ( PS * ( 200/3*( 7 + x(1)/speedsound ) + h/1000*( 2*x(1)/speedsound - 11) ) );
func_1 = @(x) qbar(x)*CL(x) + thrust(x)*sin(x(2)) - W;
func_2 = @(x) qbar(x)*CD(x) - thrust(x)*cos(x(2));
func_3 = @(x) Cm(x);
FUNC = @(x) [func_1(x); func_2(x); func_3(x)];
% ------ Guess --> Range of AOA ------ %
Xlow = fsolve(@(x) FUNC(x), [10 0 -30/180*pi]); % high AOA
aoa_end = Xlow(1,2);
Xhigh = fsolve(@(x) FUNC(x), [100 25/180*pi -30/180*pi]); % low AOA
aoa_start = Xhigh(1,2);
end

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 10 Mär. 2022
Bearbeitet: Torsten am 10 Mär. 2022
% ------ Finding time to climb to each altitude ------ %
time_2_5_climb = trapz(final_list_2_5(:,6),final_list_2_5(:,8))
% 92475.4221575 s = 25.7 hours <-- this is the result I got
time_3_climb = trapz(final_list_3(:,6),final_list_3(:,8))
% 164693.805554 s = 45.7 hours <-- this is the result I got
instead of
% ------ Finding time to climb to each altitude ------ %
time_2_5_climb = trapz(final_list_2_5(:,8),final_list_2_5(:,6))
% 92475.4221575 s = 25.7 hours <-- this is the result I got
time_3_climb = trapz(final_list_3(:,8),final_list_3(:,6))
% 164693.805554 s = 45.7 hours <-- this is the result I got
And one further hint:
fsolve will perform much faster in your loops if you choose the last solution as initial guess for the next call:
x = fsolve(@(x) func(x), x);
instead of
x = fsolve(@(x) func(x), [40 0 0]);
Dont forget to initialize
x = [40 0 0]
in front of the two loops.
  8 Kommentare
Torsten
Torsten am 11 Mär. 2022
You mean
f = @(t)interp1(final_list_2_5(:,6),final_list_2_5(:,1),t);
val = integral(f,final_list_2_5(1,6),x_1000)
?
To see how the area under the curves develop with altitude, you may also use "cumtrapz":
S = cumtrapz(final_list_2_5(:,6),final_list_2_5(:,8));
plot(final_list_2_5(:,6),S)
Rachel Ong
Rachel Ong am 11 Mär. 2022
I see, I'll try that and check out cumtrapz as well. Thank you!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by