How to perform summation with double subscript notation?

3 Ansichten (letzte 30 Tage)
Hello everyone, I have to perform some analysis based on the following equation, which contains summation operator with double subscript notation.
I have written a code. Can anyone please look at it and confim whether I am wrong or right?
alpha =0;
for i=1:2
for j=1:2
alpha=alpha +(C(i)*A(j)*((((E-Eg(j)+Ep(i))^2)/(exp(Ep(i)/(k*T))-1))+(((E-Eg(j)-Ep(i))^2)/(1-exp(-Ep(i)/(k*T))))));
end
end
Alpha=(alpha+(Ad*((E-Egd)^(1/2))));

Akzeptierte Antwort

Star Strider
Star Strider am 6 Mär. 2022
First, provide the ‘C’ and the other missing vectors, then save ‘alpha’ as a matrix, then use the sum function to sum its elements.
alpha =0;
for i=1:2
for j=1:2
alpha(i,j) = C(i)*A(j)*((((E-Eg(j)+Ep(i))^2)/(exp(Ep(i)/(k*T))-1)));
end
end
Unrecognized function or variable 'C'.
Alpha=(sum(alpha(:))+(Ad*((E-Egd).^(1/2))))
Try that with the vectors to see if the result is as desired.
.
  4 Kommentare
Md. Golam Zakaria
Md. Golam Zakaria am 6 Mär. 2022
@Star Strider actually the square root is there, I mistyped the equation. You just tell me if there is any coding error regarding the summation.
Star Strider
Star Strider am 6 Mär. 2022
I do not see anything wrong with it. The easiest way to troubleshoot it is to see what the individual terms evaluate to, and then see if those are correct —
h=4.136*10^-15; % Planck's Constant
k=8.617*10^-5; % Boltzmann's Constant
c=3*10^8; % speed of light
T=300; % Ambient Temparature
beta=7.021*10^-4;
gamma=1108;
Eg0_1=1.1557;
Eg0_2=2.5;
Egd0=3.2;
Eg1=Eg0_1-((beta*(T^2))/(T+gamma));
Eg2=Eg0_2-((beta*(T^2))/(T+gamma));
Egd=Egd0-((beta*(T^2))/(T+gamma));
Eg=[Eg1 Eg2];
Ep=[1.827*10^-2 5.773*10^-2];
C=[5.5 4.0];
A=[3.231*10^2 7.237*10^3];
Ad=1.052*10^6;
walenength=(.2*10^-6):(.0001*10^-6):(1.2*10^-6);
num=numel(walenength);
Alpha=nan(1,num);
for t=1:(num/1000)
lambda=walenength(t);
E=((h*c)/lambda);
alpha =0;
for i=1:2
for j=1:2
fprintf([repmat('—',1, 20) '\nt = %4d\ti = %d\tj = %d\n'],t,i,j)
Term_1(i,j) = (((E-Eg(j)+Ep(i))^2)./(exp(Ep(i)/(k.*T))-1))
Term_2(i,j) = (((E-Eg(j)-Ep(i))^2)/(1-exp(-Ep(i)/(k*T))))
alpha=alpha +(C(i)*A(j)*((((E-Eg(j)+Ep(i))^2)./(exp(Ep(i)/(k.*T))-1))+(((E-Eg(j)-Ep(i))^2)/(1-exp(-Ep(i)/(k*T))))));
end
end
Alpha(t)=(alpha+(Ad*((E-Egd)^(1/2))));
end
———————————————————— t = 1 i = 1 j = 1
Term_1 = 25.4307
Term_2 = 50.8231
———————————————————— t = 1 i = 1 j = 2
Term_1 = 1×2
25.4307 13.8133
Term_2 = 1×2
50.8231 27.4640
———————————————————— t = 1 i = 2 j = 1
Term_1 = 2×2
25.4307 13.8133 3.1853 0
Term_2 = 2×2
50.8231 27.4640 28.3998 0
———————————————————— t = 1 i = 2 j = 2
Term_1 = 2×2
25.4307 13.8133 3.1853 1.7396
Term_2 = 2×2
50.8231 27.4640 28.3998 15.2603
———————————————————— t = 2 i = 1 j = 1
Term_1 = 2×2
25.3999 13.8133 3.1853 1.7396
Term_2 = 2×2
50.7610 27.4640 28.3998 15.2603
———————————————————— t = 2 i = 1 j = 2
Term_1 = 2×2
25.3999 13.7905 3.1853 1.7396
Term_2 = 2×2
50.7610 27.4184 28.3998 15.2603
———————————————————— t = 2 i = 2 j = 1
Term_1 = 2×2
25.3999 13.7905 3.1815 1.7396
Term_2 = 2×2
50.7610 27.4184 28.3649 15.2603
———————————————————— t = 2 i = 2 j = 2
Term_1 = 2×2
25.3999 13.7905 3.1815 1.7368
Term_2 = 2×2
50.7610 27.4184 28.3649 15.2347
———————————————————— t = 3 i = 1 j = 1
Term_1 = 2×2
25.3691 13.7905 3.1815 1.7368
Term_2 = 2×2
50.6991 27.4184 28.3649 15.2347
———————————————————— t = 3 i = 1 j = 2
Term_1 = 2×2
25.3691 13.7678 3.1815 1.7368
Term_2 = 2×2
50.6991 27.3728 28.3649 15.2347
———————————————————— t = 3 i = 2 j = 1
Term_1 = 2×2
25.3691 13.7678 3.1776 1.7368
Term_2 = 2×2
50.6991 27.3728 28.3300 15.2347
———————————————————— t = 3 i = 2 j = 2
Term_1 = 2×2
25.3691 13.7678 3.1776 1.7340
Term_2 = 2×2
50.6991 27.3728 28.3300 15.2091
———————————————————— t = 4 i = 1 j = 1
Term_1 = 2×2
25.3383 13.7678 3.1776 1.7340
Term_2 = 2×2
50.6372 27.3728 28.3300 15.2091
———————————————————— t = 4 i = 1 j = 2
Term_1 = 2×2
25.3383 13.7452 3.1776 1.7340
Term_2 = 2×2
50.6372 27.3274 28.3300 15.2091
———————————————————— t = 4 i = 2 j = 1
Term_1 = 2×2
25.3383 13.7452 3.1738 1.7340
Term_2 = 2×2
50.6372 27.3274 28.2951 15.2091
———————————————————— t = 4 i = 2 j = 2
Term_1 = 2×2
25.3383 13.7452 3.1738 1.7311
Term_2 = 2×2
50.6372 27.3274 28.2951 15.1835
———————————————————— t = 5 i = 1 j = 1
Term_1 = 2×2
25.3076 13.7452 3.1738 1.7311
Term_2 = 2×2
50.5754 27.3274 28.2951 15.1835
———————————————————— t = 5 i = 1 j = 2
Term_1 = 2×2
25.3076 13.7226 3.1738 1.7311
Term_2 = 2×2
50.5754 27.2820 28.2951 15.1835
———————————————————— t = 5 i = 2 j = 1
Term_1 = 2×2
25.3076 13.7226 3.1700 1.7311
Term_2 = 2×2
50.5754 27.2820 28.2603 15.1835
———————————————————— t = 5 i = 2 j = 2
Term_1 = 2×2
25.3076 13.7226 3.1700 1.7283
Term_2 = 2×2
50.5754 27.2820 28.2603 15.1581
———————————————————— t = 6 i = 1 j = 1
Term_1 = 2×2
25.2770 13.7226 3.1700 1.7283
Term_2 = 2×2
50.5137 27.2820 28.2603 15.1581
———————————————————— t = 6 i = 1 j = 2
Term_1 = 2×2
25.2770 13.7000 3.1700 1.7283
Term_2 = 2×2
50.5137 27.2367 28.2603 15.1581
———————————————————— t = 6 i = 2 j = 1
Term_1 = 2×2
25.2770 13.7000 3.1662 1.7283
Term_2 = 2×2
50.5137 27.2367 28.2256 15.1581
———————————————————— t = 6 i = 2 j = 2
Term_1 = 2×2
25.2770 13.7000 3.1662 1.7255
Term_2 = 2×2
50.5137 27.2367 28.2256 15.1326
———————————————————— t = 7 i = 1 j = 1
Term_1 = 2×2
25.2464 13.7000 3.1662 1.7255
Term_2 = 2×2
50.4521 27.2367 28.2256 15.1326
———————————————————— t = 7 i = 1 j = 2
Term_1 = 2×2
25.2464 13.6775 3.1662 1.7255
Term_2 = 2×2
50.4521 27.1915 28.2256 15.1326
———————————————————— t = 7 i = 2 j = 1
Term_1 = 2×2
25.2464 13.6775 3.1624 1.7255
Term_2 = 2×2
50.4521 27.1915 28.1909 15.1326
———————————————————— t = 7 i = 2 j = 2
Term_1 = 2×2
25.2464 13.6775 3.1624 1.7227
Term_2 = 2×2
50.4521 27.1915 28.1909 15.1072
———————————————————— t = 8 i = 1 j = 1
Term_1 = 2×2
25.2159 13.6775 3.1624 1.7227
Term_2 = 2×2
50.3906 27.1915 28.1909 15.1072
———————————————————— t = 8 i = 1 j = 2
Term_1 = 2×2
25.2159 13.6550 3.1624 1.7227
Term_2 = 2×2
50.3906 27.1464 28.1909 15.1072
———————————————————— t = 8 i = 2 j = 1
Term_1 = 2×2
25.2159 13.6550 3.1586 1.7227
Term_2 = 2×2
50.3906 27.1464 28.1563 15.1072
———————————————————— t = 8 i = 2 j = 2
Term_1 = 2×2
25.2159 13.6550 3.1586 1.7199
Term_2 = 2×2
50.3906 27.1464 28.1563 15.0819
———————————————————— t = 9 i = 1 j = 1
Term_1 = 2×2
25.1854 13.6550 3.1586 1.7199
Term_2 = 2×2
50.3293 27.1464 28.1563 15.0819
———————————————————— t = 9 i = 1 j = 2
Term_1 = 2×2
25.1854 13.6326 3.1586 1.7199
Term_2 = 2×2
50.3293 27.1013 28.1563 15.0819
———————————————————— t = 9 i = 2 j = 1
Term_1 = 2×2
25.1854 13.6326 3.1548 1.7199
Term_2 = 2×2
50.3293 27.1013 28.1217 15.0819
———————————————————— t = 9 i = 2 j = 2
Term_1 = 2×2
25.1854 13.6326 3.1548 1.7171
Term_2 = 2×2
50.3293 27.1013 28.1217 15.0566
———————————————————— t = 10 i = 1 j = 1
Term_1 = 2×2
25.1549 13.6326 3.1548 1.7171
Term_2 = 2×2
50.2680 27.1013 28.1217 15.0566
———————————————————— t = 10 i = 1 j = 2
Term_1 = 2×2
25.1549 13.6102 3.1548 1.7171
Term_2 = 2×2
50.2680 27.0563 28.1217 15.0566
———————————————————— t = 10 i = 2 j = 1
Term_1 = 2×2
25.1549 13.6102 3.1510 1.7171
Term_2 = 2×2
50.2680 27.0563 28.0872 15.0566
———————————————————— t = 10 i = 2 j = 2
Term_1 = 2×2
25.1549 13.6102 3.1510 1.7143
Term_2 = 2×2
50.2680 27.0563 28.0872 15.0313
figure
plot((walenength./10^-6),real(Alpha))
hold on
plot((walenength./10^-6),imag(Alpha))
plot((walenength./10^-6),abs(Alpha),'--')
hold off
set(gca,'YScale','log')
ylim([(10^0) (10^9)])
xlabel('Wavelength \lambda ,(\mum)')
ylabel('Absorption Coefficient, \alpha(m^{-1})')
legend('Re(\alpha(T))','Im(\alpha(T))','|\alpha(T)|', 'Location','best')
See if the intermediate values appear to be correct.
.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange

Produkte


Version

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by