An error occurred when implementing gradient descent
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Nikky schulz
am 6 Mär. 2022
Bearbeitet: Nikky schulz
am 21 Mär. 2022
Given equation: 

What can I modify in my code to plot the desired contour and plot the graph in this way:

0 Kommentare
Akzeptierte Antwort
Torsten
am 6 Mär. 2022
Bearbeitet: Torsten
am 6 Mär. 2022
What can I modify in my code to plot the desired contour and plot the graph in this way
Change the line
f = -200*(y-x^2)^2+ (1-x^2)^2;
to
f = 200*(y-x^2)^2+ (1-x^2)^2;
I suggest using
f = @(x)200*(x(2)-x(1)^2)^2+ (1-x(1)^2)^2;
g = @(x)[200*2*(x(2)-x(1)^2)*(-2*x(1))+2*(1-x(1)^2)*(-2*x(1)),200*2*(x(2)-x(1)^2)];
%f = 200*(y-x^2)^2+ (1-x^2)^2;
%g = gradient(f, [x, y]);
lr = 0.001;
eps = 1e-8;
iteration_limit = 1e4;
p = [0.3 0.5];
for i=1:iteration_limit
pGrad = g(p(end,:));
%pGrad = [subs(g(1),[x y],p(end,:)) subs(g(2),[x y],p(end,:))];
pTMP = p(end,:) - lr*pGrad;
%p = [p;double(pTMP)];
p = [p;pTMP];
%if sum( (p(end,:)-p(end-1,:)).^2 ) < eps
if sqrt(sum( (p(end,:)-p(end-1,:)).^2 ) )< eps
break
end
end
instead of the symbolic variant.
4 Kommentare
Torsten
am 7 Mär. 2022
f = @(x,y)200*(y-x.^2).^2+ (1-x.^2).^2;
g1 = @(x,y) 200*2*(y-x.^2).*(-2*x)+2*(1-x.^2).*(-2*x);
g2 = @(x,y) 200*2*(y-x.^2);
g = @(x,y)[g1(x,y),g2(x,y)];
lr = 0.001;
eps = 1e-8;
iteration_limit = 1e4;
p = [0.3 0.5];
for i=1:iteration_limit
pGrad = g(p(end,1),p(end,2));
pTMP = p(end,:) - lr*pGrad;
p = [p;pTMP];
if sqrt(sum( (p(end,:)-p(end-1,:)).^2 ) )< eps
break
end
end
v = -2:.01:2;
[X, Y] = meshgrid(v,v);
contour(v,v,f(X,Y))
hold on
quiver(v,v,g1(X,Y),g2(X,Y))
plot(p(:,1),p(:,2))
hold off
subtitle(['Path Trajectory started from ',mat2str(round(p(1,:),3)),' with \eta=',num2str(lr)])
if i<iteration_limit
title(['converged to ',mat2str(round(p(end,:),3)),' after ',mat2str(i),' steps'])
else
title(['stopped at ',mat2str(round(p(end,:),3)),' without converging'])
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

