How to import csv deep learning dataset with labels to matlab?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
rami dishlo
am 5 Mär. 2022
Kommentiert: rami dishlo
am 15 Mär. 2022
Hello everyone,
I am trying to train a fully connected deep learning model.
I have my data set in a csv file so that each row represents a different signal.
The first 56 coloums represents the signal and the 2 last coloums represents the labels for the signals (there are two labels).
How can I import the cvs file in a way that i will be able to train a deep learning network with it?

0 Kommentare
Akzeptierte Antwort
yanqi liu
am 7 Mär. 2022
yes,sir,may be read csv and reshape the data(:,1:56) into 4-D as train_input,data(:, 57:58) make to label vector as train_output
if possible,may be upload your csv to analysis
3 Kommentare
yanqi liu
am 10 Mär. 2022
yes,sir,now we can use
data = load('Train Data.csv');
% make X and Y
X = data(:, 10 : 65);
Y = data(:, 66 : 67);
[~, Y] = max(Y');
X = X';
Y = Y';
% make cnn
num_class = length(unique(Y));
% make data shuffle
rand('seed', 0)
ind = randperm(size(X, 2));
X = X(:,ind);
Y = Y(ind);
Y = categorical(Y);
% Split Data
rate = 0.8;
ind_split = round(length(Y)*rate);
train_X = X(:,1:ind_split);
train_Y = Y(1:ind_split);
val_X = X(:,ind_split+1:end);
val_Y = Y(ind_split+1:end);
% Data Batch
XTrain=(reshape(train_X, [size(X,1),1,1,size(train_X,2)]));
XVal=(reshape(val_X', [size(X,1),1,1,size(val_X,2)]));
% CNN
layers = [imageInputLayer([size(X,1) 1 1])
convolution2dLayer([30 1],3,'Stride',1)
dropoutLayer
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(num_class)
softmaxLayer
classificationLayer];
% Specify training options.
opts = trainingOptions('adam', ...
'MaxEpochs',200, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ValidationData',{XVal,val_Y},...
'ExecutionEnvironment', 'cpu', ...
'ValidationPatience',Inf);
% Train
yc = categorical(train_Y);
net1 = trainNetwork(XTrain,yc,layers,opts);
% Test
miniBatchSize = 27;
YPred = classify(net1,XVal, ...
'MiniBatchSize',miniBatchSize,...
'ExecutionEnvironment', 'cpu');
acc = mean(YPred(:) == val_Y(:))
figure
t = confusionchart(val_Y(:),YPred(:));

Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!