Trying reduce overfitting of training plot

2 Ansichten (letzte 30 Tage)
Nathaniel Porter
Nathaniel Porter am 4 Mär. 2022
Kommentiert: Nathaniel Porter am 7 Mär. 2022
Previoulsy tried running network with two sets of data however was not succesful. Achieved progres with running one per dataset however want to know how I can reduce any overfitting even though the validation accuracy seems good.
clc; clear all; close all;
%Import/Upload data
load Projectdata.mat
% change to label vector
CS1 = categories(categorical(INS_output));
Z2 = [];
for i = 1 : length(INS_output)
Z2(i,1) = find(INS_output(i)==CS1);
end
Yo2 = INS_output;
INS_output = Z2;
%transposing insulin data
InsulinReadings_T = InsulinReadings';
rand('seed', 0)
ind = randperm(size(InsulinReadings_T, 1));
InsulinReadings_T = InsulinReadings_T(ind, :);
INS_output = INS_output(ind);
InsulinReadings_train = InsulinReadings_T;
train_InsulinReadings = InsulinReadings_train(1:84,:);
train_INS_output = INS_output(1:84);
InsulinReadingsTrain=(reshape(train_InsulinReadings',[1758,1,1,84]));
val_InsulinReadings = InsulinReadings_train(85:102,:);
val_INS_output = INS_output(85:102);
InsulinReadingsVal=(reshape(val_InsulinReadings', [1758,1,1,18]));
test_InsulinReadings = InsulinReadings_train(103:120,:);
test_INS_output = INS_output(103:120);
InsulinReadingsTest=(reshape(test_InsulinReadings', [1758,1,1,18]));
%% NETWORK ARCHITECTURE
layers = [imageInputLayer([1758 1 1]) % Creating the image layer
convolution2dLayer([102 1],3,'Stride',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(1)
regressionLayer];
% Specify training options.
opts = trainingOptions('sgdm', ...
'MaxEpochs',500, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ValidationData',{InsulinReadingsVal,val_INS_output,},...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'ExecutionEnvironment', 'cpu', ...
'ValidationPatience',Inf);
%% Train network
%net = trainNetwork(XTrain,Trainoutfinal,layers,opts);
yc1 = train_INS_output(:);
net2 = trainNetwork(InsulinReadingsTrain,yc1,layers,opts);
%% Compare against testing Data
INS_outputpredicted = predict(net2, InsulinReadingsTest)
predictionError = test_INS_output - INS_outputpredicted;
squares = predictionError.^2;
rmse = sqrt(mean(squares))
figure
scatter(INS_outputpredicted, test_INS_output,'+')
title ('True value vs Predicted Value')
xlabel ("Predicted Value")
ylabel ("True Value")
hold on
plot([-3 3], [-7 7], 'b--')
  3 Kommentare
Nathaniel Porter
Nathaniel Porter am 4 Mär. 2022
Due to the significant gap found between the validation line and training line.
Ive J
Ive J am 5 Mär. 2022
Your train and validation sets should be non-overlapping, and if this is the case here (as should be), your model is protected against overfitting simply because train/validation sets never met each other.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

yanqi liu
yanqi liu am 7 Mär. 2022
may be set dropoutLayer(value) to reduce more parameters during training
  1 Kommentar
Nathaniel Porter
Nathaniel Porter am 7 Mär. 2022
Is a 0.5 dropout layer value good or should increase and determine if it helps

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by