Solving Integrations with Simpson's Rule
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen

MY CODE:
syms r
r0 = 3; % Radius of the pipe in cm
% Given equation: Q = integration of v*dA
% Cross sectional Area, A = pi*r^2
% dA = 2*pi*r*dr
% v = 2*(1-(r/r0))^(1/6)
% Declare the function
Q = 4*pi*r*(1-r/r0)^(1/6);
n = 1280; % Number of segments
a = 0; % Lower limit in min
b = 3; % Upper limit in min
simp_int = simpson(Q, n, a, b)
function integral = simpson(func, n, a, b)
h = (b-a)/n;
x = a;
sum = feval(func,x);
for i = 1:2:n-2
x = x+h;
sum = sum+4*feval(func,x);
x = x+h;
sum = sum+2*feval(func,x);
end
x = x+h;
sum = sum+4*feval(func,x);
sum = sum+feval(func,b);
integral = (b-a)*sum/(3*n);
end
MY CODE ERROR:
Error using feval
Function to evaluate must be represented as a string scalar, character vector, or function_handle object.
Error in untitled>simpson (line 23)
sum = feval(func,x);
Error in untitled (line 19)
simp_int = simpson(Q, n, a, b)
0 Kommentare
Antworten (2)
David Hill
am 23 Feb. 2022
Bearbeitet: David Hill
am 23 Feb. 2022
You are doing numerical integral, no reason for symbolics.
r0 = 3;
f=@(r)4*pi*r.*(1-(r/r0)).^(1/6);
n = 1280;
a = 0;
b = 3;
h = (b-a)/n;
x = a;
s=f(x);
for i = 1:2:n-2
x = x+h;
s = s+4*f(x);
x = x+h;
s = s+2*f(x);
end
x = x+h;
s = s+4*f(x);
s = s+f(b);
Integral = (b-a)*s/(3*n);
%Using built-in MATLAB functions
Integral2=integral(f,0,3);
r=0:.00001:3;
Integral3=.00001*trapz(f(r));
0 Kommentare
AndresVar
am 23 Feb. 2022
Bearbeitet: AndresVar
am 23 Feb. 2022
You need to declare Q as a function handle or use subs.
syms r
r0=3;
Q = 4*pi*r*(1-r/r0)^(1/6);
subs(Q,'r',0)
%%% Alternatively declare Q(r)
clear;
syms Q(r)
r0=3;
Q(r)=4*pi*r*(1-r/r0)^(1/6);
Q(0)
%%% feval declare Q as anonymous function
clear;
r0=3;
Q=@(r) 4*pi*r*(1-r/r0)^(1/6);
feval(Q,0)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!