PDEPE function

15 Ansichten (letzte 30 Tage)
Alex
Alex am 23 Sep. 2011
Kommentiert: Mohammed Thaiki am 1 Dez. 2016
Hello everyone, I would like to use pdepe for solving a heat equation 1D space, so it looks good. But I don't really understand where the diffusion coefficient is ?
I would like to solve : (1)--> du/dt = d/dx(D(u) du/dx) with D(u) the non linear diffusion coefficient function of u. Is it possible to put D(u) at this location in the equation (1)?
Thanks to the community. :)

Akzeptierte Antwort

Grzegorz Knor
Grzegorz Knor am 23 Sep. 2011
Yes it is possible in pdefun :)
Look at example:
function diffusion
m = 0;
x = linspace(0,1,20);
t = linspace(0,2,5);
sol = pdepe(m,@eqtn,@ic,@bc,x,t);
u = sol(:,:,1);
figure;
surf(x,t,u);
xlabel('Distance x');
ylabel('Time t');
% --------------------------------------------------------------------------
function [c,f,s] = eqtn(x,t,u,DuDx)
c = 1;
f = Dfsn(u)*DuDx;
s = 0;
% --------------------------------------------------------------------------
function u0 = ic(x)
u0 = 1:length(x);
% --------------------------------------------------------------------------
function [pl,ql,pr,qr] = bc(xl,ul,xr,ur,t)
pl = ul;
ql = 2;
pr = ur;
qr = 2;
% --------------------------------------------------------------------------
function d = Dfsn(u)
d = sqrt(u+1);
Where Dfsn is your non linear diffusion coefficient function.
  5 Kommentare
Alex
Alex am 3 Okt. 2011
Ok, thanks for the answer. I had work on it, but I remain stuck on pl, ql, pr and qr. In a basic heat equation you have to give an initial condition and boundary condition. What is in that case the boundary condition ?
For example, initial condition is u(t=0,x)=sin(Pix) u(t,x=0)=u(t,x=1)=0 for [0,1] in space.
So what are the link with pl,pr,ql,qr and boundary condition ?
Mohammed Thaiki
Mohammed Thaiki am 1 Dez. 2016
Hello ; I have a problem with a heat transfer script, below the script:
clear all; x=linspace(0,.01,50);%We use 50 values from 0 to 0.01 t=linspace(0,1,60);%We used 60 points from 0 to 1 m=0; sol=pdepe(m,@ecuation,@initialcond,@boundary,x,t) u=sol(:,:,1); % Surface plot command and data surf(x,t,u) colormap([gray]) xlabel('\delta (m)') ylabel('L (m)') zlabel('C_a (M)') shading interp figure for j=1:length(t) plot(x,u(j,:),'k') xlabel('\delta (m)') ylabel('C_a (M)') hold on end
and the three files :
1. @ecuation function [c,f,s]=ecuation(x,t,u,DuDx) c=2*0.5*((x/0.01)-0.5*(x/0.01)^2)/2.1e-5;%term (C) f=DuDx;%Flow term (F) s=0;%source term (S)
2. @initialcond %Initial conditions. function u0=initialcond(x) u0=0;
3. @boundary %Boundary conditions. function [pl,ql,pd,qd]=boundary(xl,ul,xd,ud,t) %for y = 0 pl=0; ql=1; %%for y = δ pd=ur-.1; qd=0;
MATLAB gives error in line :
sol=pdepe(m,@ecuation,@initialcond,@boundary,x,t)
I am waiting for your ideas to solve this problem thank you

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Matrix Computations finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by