energy of a signal in t and f domain
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ray Lee
am 3 Dez. 2014
Beantwortet: Paul
am 10 Nov. 2024 um 4:22
The energy of a signal is expected to be the same in t and f domain.
n = 1e4;
dx = 0.25;
x = rand(n,1) -0.5;
ex = sum(x.^2) *dx; % energy in t domain
y = fft(x);
fs = 1/dx;
df = fs/n;
ya = abs(y);
ey = sum(ya.^2) *df; % energy in f domain
but from the code, ey/ex=16, exactly the squared fs.
what's the problem?
0 Kommentare
Akzeptierte Antwort
Star Strider
am 3 Dez. 2014
You need to normalise the fft by dividing it by the length of the signal:
y = fft(x)/length(x);
See the documentation for fft for details.
Weitere Antworten (2)
Paul
am 10 Nov. 2024 um 4:22
For a finite duration signal x[n] of length N, and its Discrete Fourier Transform (DFT) X[k] (as computed by fft), the energy relationship is given by Parseval's Theorem: sum(abs(x[n]^2)) = sum(abs(X[k])^2))/N
n = 1e4;
dx = 0.25;
x = rand(n,1) -0.5;
%ex = sum(x.^2) *dx; % energy in t domain
y = fft(x);
fs = 1/dx;
%df = fs/n;
%ya = abs(y);
%ey = sum(ya.^2) *df; % energy in f domain
Parseval's Theorem:
[sum(abs(x).^2) sum(abs(y).^2)/n]
If the first term is multiplied by dx, then the second must also be multiplied by dx = 1/fs
[sum(abs(x).^2)*dx sum(abs(y).^2)/n/fs]
0 Kommentare
Siehe auch
Kategorien
Mehr zu Spectral Measurements finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!