fsolve yields initial guess as solution to non-linear equation
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Saeid
am 13 Feb. 2022
Beantwortet: Saeid
am 14 Feb. 2022
I am currently trying to solve a non-linear equation using the following program:
clc; format long g;
a=0.5; Eta0=100; t12=1e6; q=2e-7; R=0.001;
x0=8e5;
Px=F1(q,Eta0,a,t12,R,x0)
function Px=F1(q,Eta0,a,t12,R,x0)
A=pi*(R^4)/(8*Eta0); B=4/(3+a); C=0.5*R/t12;
[x,fval]=fsolve(@(x) FX1(x,A,B,C,a),x0);
Px=x;
function fx1=FX1(x,A,B,C,a)
fx1=A*x*(1+B*(C*x)^(a-1))-q;
end
end
But no matter what value of initial guess I choose, the program always gives THAT value as the root of this equation. Here the soultion would be x=1e6, but the program yields any value that I enter as x0, which in this case is 8e5.
I have tested the routine with solutions that are smaller numbers (order of magnitude of (1-10), but when the solutions becomes a relatively large number this problem occurs.
0 Kommentare
Akzeptierte Antwort
Davide Masiello
am 13 Feb. 2022
Try with this syntax
clc, format long g
a = 0.5;
Eta0 = 100;
t12 = 1e6;
q = 2e-7;
R = 0.001;
x0 = 14e5;
Px = fzero(@(x)F1(x,q,Eta0,a,t12,R),x0);
disp(Px)
disp(Px-x0)
function out=F1(x,q,Eta0,a,t12,R)
A=pi*(R^4)/(8*Eta0);
B=4/(3+a);
C=0.5*R/t12;
out=A*x*(1+B*(C*x)^(a-1))-q;
end
Now the value found is always the same regardless of x0, provided that x0 is not too far from the root.
0 Kommentare
Weitere Antworten (1)
Siehe auch
Kategorien
Mehr zu Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!