How to Classify New Dataset using Two trained models
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have trained two models on a dataset
I want to Classify new data using the both the trained model. But Classify take one trained network. How can i do that?
Resnet50.mat
Resnet18.mat
rxTestPred = classify(resnet.trainedNet,rxTestFrames);
testAccuracy = mean(rxTestPred == rxTestLabels);
disp("Test accuracy: " + testAccuracy*100 + "%")
2 Kommentare
KSSV
am 28 Jan. 2022
Question is not clear. What problem you have in using the trained model ofr new data?
Antworten (1)
yanqi liu
am 8 Feb. 2022
yes,sir,may be use different load variable,such as
net1 = load('Resnet50.mat')
net2 = load('Resnet18.mat')
rxTestPred = classify(net1.resnet.trainedNet,rxTestFrames);
testAccuracy = mean(rxTestPred == rxTestLabels);
disp("Resnet50 Test accuracy: " + testAccuracy*100 + "%")
rxTestPred = classify(net2.resnet.trainedNet,rxTestFrames);
testAccuracy = mean(rxTestPred == rxTestLabels);
disp("Resnet18 Test accuracy: " + testAccuracy*100 + "%")
3 Kommentare
Nagwa megahed
am 2 Jun. 2022
please i ask if you reach to how implement ensemble learning in matlab ?? as i need to perform ensemble learning between more than three different networks
David Willingham
am 3 Jun. 2022
See this page for information on how to work with multi-input multi-output networks in MATLAB: Multiple-Input and Multiple-Output Networks
Siehe auch
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!