HELP :( high learning error or low performance in neural network classifying ?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
i did write this code, it is a simple code to classify 685, twelve dimensional data in to 3 classes, class 1 and 2 and 3 , my classifier is a neural network , i have no idea what wrong is with my code that my learning error (pf)is so high and it is around 0.4 - 0.6. no matter what i do it doesn't get any lower, i need it to be very lower for example 0.02 or 0.04 , i couldn't load my input matrix here due to it is so big , is there anyone to help me please ??? i change the number of my hidden nodes from 6 up to 400 but no improvement achieved , i also changed the number of epochs but again nothing :((((
if true
clc;
close all;
clear all;
load('E:\all uni stuff\thesis\data feature\CRQA_sort_ICA.mat') xs=CRQA_gham_sort; xn=CRQA_khonsa_sort; xh=CRQA_shad_sort; xs(:,:,12)=[]; xs(:,:,7)=[]; xn(:,:,12)=[]; xn(:,:,7)=[]; xh(:,:,12)=[]; xh(:,:,7)=[];
st.f1=reshape(xh(:,5,:),207,11); st.f2=reshape(xs(:,5,:),237,11); st.f3=reshape(xn(:,5,:),241,11); k1=[st.f1;st.f2;st.f3];
D1=ones(1,207); D2=2*ones(1,237); D3=3*ones(1,241); DD=[D1 D2 D3]'; m=[DD,k1]; n=size(m,1); p=randperm(n); m=m(p,:); D=m(:,1); k=m(:,2:12); %--------------------------original------------
%%%D=D'; OL=[k(1:157,:);k(208:394,:);k(445:635,:)]'; DL=[D(1:157,:);D(208:394,:);D(445:635,:)]'; %D1=zeros(1,157); %D2=ones(1,187); %D3=2*ones(1,191); %DL=[D1 D2 D3]; %--------------------------learning phase----------------------------
%size(OL); %size(DL);
%%k=k'; % net = newff(OL,DL,20); % net = train(net,OL,DL); % outputs = net(OL); % errors = outputs -DL ; % perf = perform(net,outputs,DL) % net=newff(OL,DL,[9,3]); % net=newff(OL,DL,5); %net=newff(OL,[6,4,1],{'tansig' 'tansig' 'purelin'},'traincgf'); net=newff(minmax(OL),[10,1],{'tansig' 'purelin'},'trainlm'); %net=newff(minmax(k),[8,1],{'tansig' 'purelin'},'trainlm'); net.trainParam.epochs=500; %net.trainparam.lr=0.002; net=train(net,OL,DL); YL=sim(net,OL); E_oL=mse(YL-DL) % my learning error %net=train(net,k,D); %YL=sim(net,k); %E_oL=mse(YL-D)
end
1 Kommentar
Greg Heath
am 23 Nov. 2014
Bearbeitet: Greg Heath
am 23 Nov. 2014
No one will respond until you format the code.
An unscaled value of MSE means ABSOLUTELY NOTHING ... unless, for example, it is normalized by the average target variance!
NMSE = mse(t-y)/mean(var(t',1)) % Should be in [ 0,1 ];
My goal is NMSE < 0.01 so that the net models more than 99% of the target variance
I also recommend that you try the code on a MATLAB classifier dataset For example
[ x, t] = iris_dataset;
Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!