divide matrix by a vector of the same number of column
104 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a matrix A[mXn] for example,
A=[ 0 2 0 0 0
0 1 1 0 1
0 1 0 0 2
0 0 0 0 1
0 0 0 0 0]
I have a vector that computes the colume-wise sum of A, B=sum(A,1),
B=[0 4 1 0 4]
How can I compute a matrix C, which each element is the element of A divided by the element of B that is in the same colume? Therefore, my C should be
C=[0 0.5 0 0 0
0 0.25 1 0 0.25
0 0.25 0 0 0.5
0 0 0 0 0.25
0 0 0 0 0 ]
0 Kommentare
Antworten (5)
Star Strider
am 20 Nov. 2014
Using bsxfun:
A=[ 0 2 0 0 0
0 1 1 0 1
0 1 0 0 2
0 0 0 0 1
0 0 0 0 0];
B=[0 4 1 0 4];
C = bsxfun(@rdivide, A, B);
C(isnan(C)) = 0;
0 Kommentare
Image Analyst
am 20 Nov. 2014
One way of probably many ways:
A=[ 0 2 0 0 0
0 1 1 0 1
0 1 0 0 2
0 0 0 0 1
0 0 0 0 0]
[rows, columns] = size(A)
% Get sum of columns and replicate vertically.
denom = repmat(sum(A, 1), [rows, 1])
% Do the division.
C = A ./ denom
% Set infinities (where denom == 0) to 0
C(denom==0) = 0
0 Kommentare
Amirali Kamalian
am 15 Aug. 2019
You can also use matrix-matrix multiplication where,
B = B.^(-1);
C = A*diag(B);
C(isnan(C)) = 0;
This code is perhaps easier and computationally more efficient.
0 Kommentare
per isakson
am 1 Aug. 2018
Bearbeitet: per isakson
am 1 Aug. 2018
I like this better. It avoids dividing by zero.
ispos = B>0
C = A;
C(:,ispos) = A(:,ispos) ./ B(ispos)
Requires "Implicit expansion", which was introduced in R2016b
1 Kommentar
Jos (10584)
am 1 Aug. 2018
Without logical indexing (and for positive values only):
C = nanmax(A ./ B, 0)
Vikram Gupta
am 1 Aug. 2018
Bearbeitet: per isakson
am 1 Aug. 2018
Issue here is divide by 0 is not defined. But if the extremely small change is introduced
>> B=[0 4 1 0 4];
>> B = B +(10^-10)
>> A ./ B
ans =
0 0.5000 0 0 0
0 0.2500 1.0000 0 0.2500
0 0.2500 0 0 0.5000
0 0 0 0 0.2500
0 0 0 0 0
1 Kommentar
Jos (10584)
am 1 Aug. 2018
Bearbeitet: Jos (10584)
am 1 Aug. 2018
Mathematically, this will give the wrong result ...
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!