how to get tf answer for this problem?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
arian hoseini
am 12 Jan. 2022
Kommentiert: Star Strider
am 12 Jan. 2022
a=[40]
b=[0.05 1]
c=[1]
d=[0.5 1]
e=[0.8]
f=[1 1]
g=[0.1]
h=[0.04 1]
T1=tf(a,b)
T2=tf(c,d)
T3=tf(e,f)
T4=tf(g,h)
A=(T1*T2*T3)
B=(T1*T2*T4)
C=1+B+A
A/C
i want A to be like this 32/((1+.05s)(1+0.5s)(1+s)) is this possible
0 Kommentare
Akzeptierte Antwort
Star Strider
am 12 Jan. 2022
Almost.
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3)
Azpk = zpk(A)
B=(T1*T2*T4)
Bzpk = zpk(B)
C=1+B+A
Czpk = zpk(C)
AC = A/C
ACzpk = zpk(AC)
Amr = minreal(A)
Amrzpk = zpk(Amr)
Bmr = minreal(B)
Bmrzpk = zpk(Bmr)
Cmr = minreal(C)
Cmrzpk = zpk(Cmr)
ACmr = minreal(AC)
ACmrzpk = zpk(ACmr)
.
2 Kommentare
Star Strider
am 12 Jan. 2022
My pleasure!
The form you need is not an option in any of the representations I looked through. The zpk representation is as close as it is possible to get. Dividing the transfer function by (s+20)^2 changes nothing about it.
If you absolutely must have that representation, you will need to write it yourself, or possibly use the Symbolic Math Toolbox. Special representations such as that are simply not possible in the Control System Toolbox.
s = tf('s');
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3);
% Azpk = zpk(A);
B=(T1*T2*T4);
% Bzpk = zpk(B)
C=1+B+A;
% Czpk = zpk(C)
AC = A/C;
% ACzpk = zpk(AC)
% Amr = minreal(A)
% Amrzpk = zpk(Amr)
% Bmr = minreal(B)
% Bmrzpk = zpk(Bmr)
% Cmr = minreal(C)
% Cmrzpk = zpk(Cmr)
ACmr = minreal(AC);
ACmrzpk = zpk(ACmr)
.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Startup and Shutdown finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!