root finding and plot of graph

3 Ansichten (letzte 30 Tage)
shiv gaur
shiv gaur am 12 Jan. 2022
Beantwortet: shiv gaur am 12 Jan. 2022
function y=f(x,t3)
k0=(2*pi/0.6328)*1e6;
t2=1.5e-6;
n1=1.512;n2=1.521;n3=4.1-1i*0.211;
n4=1;
m=0;
k1=k0*sqrt(n1^2-x^2);
k2=k0*sqrt(n2^2-x^2);
k3=k0*sqrt(n3^2-x^2);
k4=k0*sqrt(n4^2-x^2);
y=-(k2)*t2+atan(k1/1i*k2)+atan((k3/k2)*tan(atan(k4/1i*k2)-k3*t3))+m*pi;
end
pl plot the graph between t3 vs x(real) ,t3 vs x(imag)
t3=1e-9:1e-6;
pl pl help to plot

Antworten (2)

Alan Stevens
Alan Stevens am 12 Jan. 2022
Are you looking for something like this?
hi = 1e-6; lo = 1e-9;
n = 500;
dt = (hi-lo)/n;
t3 = lo:dt:hi;
y = f(t3);
subplot(2,1,1)
plot(t3,real(y)),grid
xlabel('t3'),ylabel('real part of y')
subplot(2,1,2)
plot(t3,imag(y)),grid
xlabel('t3'),ylabel('imaginary part of y')
function y=f(t3)
k0=(2*pi/0.6328)*1e6;
t2=1.5e-6;
n1=1.512;n2=1.521;n3=4.1-1i*0.211;
n4=1;
m=0;
k1=k0*sqrt(n1^2-t3.^2);
k2=k0*sqrt(n2^2-t3.^2);
k3=k0*sqrt(n3^2-t3.^2);
k4=k0*sqrt(n4^2-t3.^2);
y=-(k2).*t2+atan(k1./1i.*k2)+atan((k3./k2).*tan(atan(k4./1i.*k2)-k3.*t3))+m*pi;
end
  1 Kommentar
shiv gaur
shiv gaur am 12 Jan. 2022
no first we have to find the value of x ie transcedental equation then plot between t3,x

Melden Sie sich an, um zu kommentieren.


shiv gaur
shiv gaur am 12 Jan. 2022
function metal4
%T2 = 1e-9:1e-9:1e-6;
%T3=linspace(1e-9,1e-7,35);
T3=1e-9:1e-8:1e-7;
for j=1:numel(T3)
t3 = T3(j);
p0 = 0.5;
p1 = 1;
p2 = 1.5;
TOL = 10^-2;
N0 = 100; format long
h1 = p1 - p0;
h2 = p2 - p1;
DELTA1 = (f(p1,t3) - f(p0,t3))/h1;
DELTA2 = (f(p2,t3) - f(p1,t3))/h2;
d = (DELTA2 - DELTA1)/(h2 + h1);
i=3;
while i <= N0
b = DELTA2 + h2*d;
D = (b^2 - 4*f(p2,t3)*d)^(1/2);
if abs(b-D) < abs(b+D)
E = b + D;
else
E = b - D;
end
h = -2*f(p2,t3)/E;
p = p2 + h;
if abs(h) < TOL
%disp(p)
break
end
p0 = p1;
p1 = p2;
p2 = p;
h1 = p1 - p0;
h2 = p2 - p1;
DELTA1 = (f(p1,t3) - f(p0,t3))/h1;
DELTA2 = (f(p2,t3) - f(p1,t3))/h2;
d = (DELTA2 - DELTA1)/(h2 + h1);
i=i+1;
end
if i > N0
formatSpec = string('The method failed after N0 iterations,N0= %d ');
fprintf(formatSpec,N0);
end
%P(j)=abs(imag(p)*8.57e5);
P(j)=abs(real(p));
end
plot(T3,P)
end
function y=f(x,t3)
k0=(2*pi/0.6328)*1e6;
t2=1.5e-6;
n1=1.512;n2=1.521;n3=4.1-1i*0.211;
n4=1;
m=0;
k1=k0*sqrt(n1^2-x^2);
k2=k0*sqrt(n2^2-x^2);
k3=k0*sqrt(n3^2-x^2);
k4=k0*sqrt(n4^2-x^2);
y=-(k2)*t2+atan(k1/1i*k2)+atan((k3/k2)*tan(atan(k4/1i*k2)-k3*t3))+m*pi;
end

Kategorien

Mehr zu 2-D and 3-D Plots finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by